The human vaginal microbiota: from clinical medicine to models to mechanisms.

Samantha Ottinger, Clare M Robertson, Holly Branthoover, Kathryn A Patras
Author Information
  1. Samantha Ottinger: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
  2. Clare M Robertson: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
  3. Holly Branthoover: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
  4. Kathryn A Patras: Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address: katy.patras@bcm.edu.

Abstract

The composition of the vaginal microbiota is linked to numerous reproductive health problems, including increased susceptibility to infection, pregnancy complications, and impaired vaginal tissue repair; however, the mechanisms contributing to these adverse outcomes are not yet fully defined. In this review, we highlight recent clinical advancements associating vaginal microbiome composition and function with health outcomes. Subsequently, we provide a summary of emerging models employed to identify microbe-microbe interactions contributing to vaginal health, including metagenomic sequencing, multi-omics approaches, and advances in vaginal microbiota cultivation. Last, we review new in vitro, ex vivo, and in vivo models, such as organoids and humanized microbiota murine models, used to define and mechanistically explore host-microbe interactions at the vaginal mucosa.

References

  1. Eur J Obstet Gynecol Reprod Biol X. 2021 Jan 19;10:100121 [PMID: 33537666]
  2. mSystems. 2020 Jul 28;5(4): [PMID: 32723796]
  3. Biofilm. 2022 Dec 29;5:100101 [PMID: 36655001]
  4. BJOG. 2020 Jan;127(2):182-192 [PMID: 31749298]
  5. mSphere. 2020 Jul 29;5(4): [PMID: 32727857]
  6. Cell Rep. 2020 Feb 4;30(5):1463-1477.e7 [PMID: 32023462]
  7. Am J Obstet Gynecol. 2021 May;224(5):530.e1-530.e17 [PMID: 33248136]
  8. Lancet Infect Dis. 2018 May;18(5):554-564 [PMID: 29396006]
  9. Nat Protoc. 2022 Jul;17(7):1658-1690 [PMID: 35546639]
  10. Microbiol Spectr. 2021 Dec 22;9(3):e0107421 [PMID: 34756073]
  11. Microbiome. 2020 Nov 23;8(1):166 [PMID: 33228810]
  12. Mol Ecol. 2023 May;32(10):2592-2601 [PMID: 36057782]
  13. Microbiome. 2023 Mar 20;11(1):54 [PMID: 36941732]
  14. BMC Microbiol. 2020 Nov 10;20(1):339 [PMID: 33172400]
  15. Hum Reprod. 2001 Sep;16(9):1809-13 [PMID: 11527880]
  16. Menopause. 2018 Nov;25(11):1321-1330 [PMID: 30358729]
  17. Front Microbiol. 2023 Jul 17;14:1222503 [PMID: 37529322]
  18. Pathog Dis. 2022 Aug 27;80(1): [PMID: 35927516]
  19. Nat Med. 2019 Oct;25(10):1500-1504 [PMID: 31591599]
  20. BMC Microbiol. 2018 Nov 26;18(1):197 [PMID: 30477439]
  21. J Mol Med (Berl). 2021 Apr;99(4):531-553 [PMID: 33580825]
  22. Nutrients. 2020 Jan 30;12(2): [PMID: 32019222]
  23. Front Cell Infect Microbiol. 2021 Jul 06;11:669901 [PMID: 34295831]
  24. Front Immunol. 2023 Jul 27;14:1125239 [PMID: 37575226]
  25. J Clin Microbiol. 2023 Aug 23;61(8):e0083722 [PMID: 37199636]
  26. Int J Womens Health. 2022 Jan 18;14:29-39 [PMID: 35082535]
  27. Microbiome. 2022 Nov 26;10(1):201 [PMID: 36434666]
  28. EClinicalMedicine. 2023 Jun 26;61:102070 [PMID: 37528843]
  29. J Infect Dis. 2006 Jun 1;193(11):1478-86 [PMID: 16652274]
  30. Microbiome. 2022 Aug 31;10(1):141 [PMID: 36045402]
  31. BJOG. 2020 Jan;127(2):275-284 [PMID: 30932317]
  32. Nat Commun. 2020 Feb 26;11(1):940 [PMID: 32103005]
  33. Front Microbiol. 2018 Oct 08;9:2181 [PMID: 30349508]
  34. Nat Commun. 2021 Nov 1;12(1):6289 [PMID: 34725359]
  35. Cell Rep. 2023 May 30;42(5):112474 [PMID: 37149863]
  36. Biol Reprod. 1997 Oct;57(4):847-55 [PMID: 9314589]
  37. Nat Microbiol. 2023 Nov;8(11):2183-2195 [PMID: 37884815]
  38. mSphere. 2023 Feb 21;8(1):e0045222 [PMID: 36629413]
  39. Front Cell Infect Microbiol. 2020 Oct 06;10:570025 [PMID: 33123496]
  40. Res Microbiol. 2017 Nov - Dec;168(9-10):782-792 [PMID: 28435139]
  41. Obesity (Silver Spring). 2022 Jan;30(1):142-152 [PMID: 34806323]
  42. J Womens Health (Larchmt). 2023 May;32(5):553-560 [PMID: 36897755]
  43. Comput Struct Biotechnol J. 2021 May 11;19:2979-2989 [PMID: 34136097]
  44. STAR Protoc. 2020 Aug 13;1(2):100088 [PMID: 33111121]
  45. Sci Rep. 2019 Oct 1;9(1):14095 [PMID: 31575935]
  46. Front Public Health. 2023 Jan 24;11:1029741 [PMID: 36761121]
  47. EBioMedicine. 2023 Jan;87:104407 [PMID: 36529102]
  48. NPJ Biofilms Microbiomes. 2021 Dec 13;7(1):88 [PMID: 34903740]
  49. J Med Microbiol. 2016 May;65(5):377-386 [PMID: 26887782]
  50. Immunity. 2017 Jan 17;46(1):29-37 [PMID: 28087240]
  51. Microbiol Spectr. 2023 Aug 17;11(4):e0467622 [PMID: 37347202]
  52. J Infect Dis. 2023 Aug 31;228(5):646-656 [PMID: 37427495]
  53. Microorganisms. 2023 Oct 27;11(11): [PMID: 38004655]
  54. J Gerontol A Biol Sci Med Sci. 2021 Aug 13;76(9):1542-1550 [PMID: 33903897]
  55. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 [PMID: 20534435]
  56. Commun Biol. 2021 Aug 5;4(1):872 [PMID: 34354222]
  57. Microbiome. 2023 Nov 30;11(1):259 [PMID: 38031142]
  58. Front Cell Infect Microbiol. 2023 Feb 02;13:1114364 [PMID: 36816588]
  59. J Clin Invest. 2022 Mar 15;132(6): [PMID: 35113809]
  60. J Cell Sci. 2021 Mar 8;134(5): [PMID: 33468625]
  61. Sci Rep. 2022 Feb 17;12(1):2698 [PMID: 35177690]
  62. mSystems. 2021 Apr 27;6(2): [PMID: 33906914]
  63. J Infect Dis. 2019 Aug 30;220(7):1099-1108 [PMID: 30715405]
  64. Environ Microbiol. 2021 Mar;23(3):1780-1792 [PMID: 33615652]
  65. Acta Biochim Biophys Sin (Shanghai). 2022 Sep 25;54(10):1561-1565 [PMID: 36148945]
  66. Lancet Microbe. 2022 Jun;3(6):e435-e442 [PMID: 35659905]
  67. Front Microbiol. 2019 Jan 14;9:3340 [PMID: 30692980]
  68. Int J Antimicrob Agents. 2021 Mar;57(3):106277 [PMID: 33434677]
  69. NPJ Biofilms Microbiomes. 2023 Nov 20;9(1):87 [PMID: 37985659]
  70. Mol Microbiol. 2023 Jul 24;: [PMID: 37485746]
  71. Nat Commun. 2023 Jul 12;14(1):4141 [PMID: 37438386]
  72. PLoS Med. 2023 Jul 25;20(7):e1004258 [PMID: 37490459]
  73. Nat Microbiol. 2022 Mar;7(3):434-450 [PMID: 35241796]
  74. Nat Microbiol. 2023 Feb;8(2):246-259 [PMID: 36635575]
  75. PLoS Pathog. 2013;9(8):e1003536 [PMID: 23935506]
  76. Clin Infect Dis. 2023 Apr 17;76(8):1372-1381 [PMID: 36504254]
  77. Front Endocrinol (Lausanne). 2022 Dec 01;13:1057022 [PMID: 36531460]
  78. Nat Commun. 2021 Oct 13;12(1):5967 [PMID: 34645809]
  79. Nutrients. 2023 Jan 09;15(2): [PMID: 36678202]
  80. Microbiology (Reading). 2014 Oct;160(Pt 10):2272-2282 [PMID: 25073854]
  81. Nat Commun. 2020 Dec 1;11(1):6147 [PMID: 33262350]
  82. Nat Cell Biol. 2021 Feb;23(2):184-197 [PMID: 33462395]
  83. mBio. 2015 Mar 24;6(2): [PMID: 25805726]

Grants

  1. F31 HD111236/NICHD NIH HHS
  2. R01 AI157981/NIAID NIH HHS
  3. U19 AI157981/NIAID NIH HHS
  4. R01 DK128053/NIDDK NIH HHS
  5. R01 HD111236/NICHD NIH HHS

MeSH Term

Pregnancy
Female
Humans
Animals
Mice
Microbiota
Metagenome
Host Microbial Interactions
Vagina
Clinical Medicine

Word Cloud

Created with Highcharts 10.0.0vaginalmodelsmicrobiotahealthcompositionincludingmechanismscontributingoutcomesreviewclinicalinteractionsvivolinkednumerousreproductiveproblemsincreasedsusceptibilityinfectionpregnancycomplicationsimpairedtissuerepairhoweveradverseyetfullydefinedhighlightrecentadvancementsassociatingmicrobiomefunctionSubsequentlyprovidesummaryemergingemployedidentifymicrobe-microbemetagenomicsequencingmulti-omicsapproachesadvancescultivationLastnewvitroexorganoidshumanizedmurineuseddefinemechanisticallyexplorehost-microbemucosahumanmicrobiota:medicine

Similar Articles

Cited By