Runx2 deletion in hypertrophic chondrocytes impairs osteoclast mediated bone resorption.

Harunur Rashid, Caris M Smith, Vashti Convers, Katelynn Clark, Amjad Javed
Author Information
  1. Harunur Rashid: Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham 35233, AL, USA.
  2. Caris M Smith: Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham 35233, AL, USA.
  3. Vashti Convers: Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham 35233, AL, USA.
  4. Katelynn Clark: Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham 35233, AL, USA.
  5. Amjad Javed: Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham 35233, AL, USA. Electronic address: javeda@uab.edu.

Abstract

Deletion of Runx2 gene in proliferating chondrocytes results in complete failure of endochondral ossification and perinatal lethality. We reported recently that mice with Runx2 deletion specifically in hypertrophic chondrocytes (HCs) using the Col10a1-Cre transgene survive and exhibit enlarged growth plates due to decreased HC apoptosis and cartilage resorption. Bulk of chondrogenesis occurs postnatally, however, the role of Runx2 in HCs during postnatal chondrogenesis is unknown. Despite limb dwarfism, adult homozygous (Runx2) mice showed a significant increase in length of growth plate and articular cartilage. Consistent with doubling of the hypertrophic zone, collagen type X expression was increased in Runx2 mice. In sharp contrast, expression of metalloproteinases and aggrecanases were markedly decreased. Impaired cartilage degradation was evident by the retention of significant amount of safranin-O positive cartilage. Histomorphometry and μCT uncovered increased trabecular bone mass with a significant increase in BV/TV ratio, trabecular number, thickness, and a decrease in trabecular space in Runx2 mice. To identify if this is due to increased bone synthesis, expression of osteoblast differentiation markers was evaluated and found to be comparable amongst littermates. Histomorphometry confirmed similar number of osteoblasts in the littermates. Furthermore, dynamic bone synthesis showed no differences in mineral apposition or bone formation rates. Surprisingly, three-point-bending test revealed Runx2 bones to be structurally less strong. Interestingly, both the number and surface of osteoclasts were markedly reduced in Runx2 littermates. Rankl and IL-17a ligands that promote osteoclast differentiation were markedly reduced in Runx2 mice. Bone marrow cultures were performed to independently establish Runx2 and hypertrophic chondrocytes role in osteoclast development. The culture from the Runx2 mice formed significantly fewer and smaller osteoclasts. The expression of mature osteoclast markers, Ctsk and Mmp9, were significantly reduced in the cultures from Runx2 mice. Thus, Runx2 functions extend beyond embryonic development and chondrocyte hypertrophy by regulating cartilage degradation, osteoclast differentiation, and bone resorption during postnatal endochondral ossification.

Keywords

References

  1. PLoS Genet. 2014 Dec 04;10(12):e1004820 [PMID: 25474590]
  2. Curr Opin Genet Dev. 2013 Aug;23(4):438-44 [PMID: 23747034]
  3. Nature. 2003 May 15;423(6937):332-6 [PMID: 12748651]
  4. Biochem Biophys Res Commun. 2005 Mar 18;328(3):658-65 [PMID: 15694399]
  5. Development. 2009 Apr;136(7):1083-92 [PMID: 19224985]
  6. J Biol Chem. 2012 Apr 27;287(18):14760-71 [PMID: 22351759]
  7. EMBO J. 2002 Jul 1;21(13):3454-63 [PMID: 12093746]
  8. Genes Dev. 2004 Apr 15;18(8):952-63 [PMID: 15107406]
  9. Cell Death Differ. 2009 Oct;16(10):1332-43 [PMID: 19543237]
  10. Calcif Tissue Int. 1998 Nov;63(5):401-8 [PMID: 9799825]
  11. Osteoarthritis Cartilage. 2011 Feb;19(2):222-32 [PMID: 21094261]
  12. Connect Tissue Res. 2016 May;57(3):161-74 [PMID: 26818783]
  13. Wiley Interdiscip Rev Dev Biol. 2020 Jul;9(4):e373 [PMID: 31997553]
  14. Science. 1999 Jun 4;284(5420):1664-6 [PMID: 10356395]
  15. Cell. 1997 May 30;89(5):765-71 [PMID: 9182764]
  16. Arthritis Res Ther. 2010;12(1):R29 [PMID: 20167120]
  17. Nat Genet. 2002 Dec;32(4):639-44 [PMID: 12434156]
  18. J Exp Med. 2006 Nov 27;203(12):2673-82 [PMID: 17088434]
  19. Mech Dev. 2001 Aug;106(1-2):97-106 [PMID: 11472838]
  20. Nat Med. 2011 Sep 11;17(10):1235-41 [PMID: 21909103]
  21. Genesis. 2017 Oct;55(10): [PMID: 28921880]
  22. J Intern Med. 2018 Feb;283(2):121-139 [PMID: 29211319]
  23. Biochem J. 2020 Jul 17;477(13):2421-2438 [PMID: 32391876]
  24. J Bone Miner Res. 2014 Dec;29(12):2653-65 [PMID: 24862038]
  25. J Biol Chem. 1991 Aug 25;266(24):15579-82 [PMID: 1874716]
  26. Osteoarthritis Cartilage. 2014 Mar;22(3):509-18 [PMID: 24457104]
  27. Arthritis Res Ther. 2020 Jul 10;22(1):168 [PMID: 32650826]
  28. Cell. 1996 Nov 15;87(4):697-708 [PMID: 8929538]
  29. Arthritis Rheum. 2008 Sep;58(9):2764-75 [PMID: 18759297]
  30. Matrix Biol. 2008 Oct;27(8):693-9 [PMID: 18692570]
  31. J Cell Physiol. 2003 Aug;196(2):301-11 [PMID: 12811823]
  32. Matrix Biol Plus. 2021 Oct 22;12:100088 [PMID: 34805821]
  33. J Bone Miner Res. 2015 Jan;30(1):71-82 [PMID: 25079226]
  34. J Bone Miner Res. 2014 Jul;29(7):1564-1574 [PMID: 24821091]
  35. Mol Cell Biol. 2015 Apr;35(7):1097-109 [PMID: 25605327]
  36. Elife. 2022 Feb 18;11: [PMID: 35179487]
  37. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8650-5 [PMID: 11438701]
  38. Cell. 1998 May 1;93(3):411-22 [PMID: 9590175]
  39. Nature. 2013 Mar 21;495(7441):375-8 [PMID: 23485973]
  40. J Cell Biochem. 2011 Dec;112(12):3582-93 [PMID: 21793044]
  41. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12097-102 [PMID: 25092332]
  42. J Bone Miner Res. 2013 Oct;28(10):2064-9 [PMID: 23553905]
  43. Arthritis Rheum. 2012 Aug;64(8):2611-23 [PMID: 22422036]
  44. J Biol Chem. 1996 Jan 19;271(3):1544-50 [PMID: 8576151]
  45. Nature. 2018 Nov;563(7730):254-258 [PMID: 30401834]
  46. PLoS Genet. 2020 Nov 30;16(11):e1009169 [PMID: 33253203]
  47. Development. 2016 Oct 15;143(20):3826-3838 [PMID: 27621061]
  48. Sci Rep. 2017 May 24;7(1):2371 [PMID: 28539595]
  49. Cell. 1997 May 30;89(5):755-64 [PMID: 9182763]
  50. Crit Rev Eukaryot Gene Expr. 2004;14(1-2):1-41 [PMID: 15104525]
  51. Curr Top Dev Biol. 2019;133:25-47 [PMID: 30902255]
  52. Cell. 1996 Jan 26;84(2):321-30 [PMID: 8565077]
  53. Cells Tissues Organs. 2011;194(2-4):161-5 [PMID: 21597273]
  54. Histol Histopathol. 2021 Oct;36(10):1021-1036 [PMID: 34137454]
  55. Mol Biol Rep. 2007 Dec;34(4):225-31 [PMID: 17211519]
  56. Bone Res. 2023 May 22;11(1):26 [PMID: 37217496]
  57. Nat Med. 1999 Jun;5(6):623-8 [PMID: 10371499]

Grants

  1. R01 AR062091/NIAMS NIH HHS
  2. R56 AG065129/NIA NIH HHS
  3. T90 DE022736/NIDCR NIH HHS

MeSH Term

Animals
Mice
Chondrocytes
Osteoclasts
Cartilage
Osteogenesis
Bone Resorption
Hypertrophy
Cell Differentiation
Core Binding Factor Alpha 1 Subunit

Chemicals

Runx2 protein, mouse
Core Binding Factor Alpha 1 Subunit

Word Cloud

Created with Highcharts 10.0.0Runx2micebonecartilageosteoclastchondrocyteshypertrophicexpressiondifferentiationossificationresorptionchondrogenesissignificantincreasedmarkedlydegradationtrabecularnumberlittermatesreducedendochondraldeletionHCsgrowthduedecreasedrolepostnataldwarfismshowedincreaseHistomorphometrysynthesismarkersosteoclastsculturesdevelopmentsignificantlyDeletiongeneproliferatingresultscompletefailureperinatallethalityreportedrecentlyspecificallyusingCol10a1-CretransgenesurviveexhibitenlargedplatesHCapoptosisBulkoccurspostnatallyhoweverunknownDespitelimbadulthomozygouslengthplatearticularConsistentdoublingzonecollagentypeXsharpcontrastmetalloproteinasesaggrecanasesImpairedevidentretentionamountsafranin-OpositiveμCTuncoveredmassBV/TVratiothicknessdecreasespaceidentifyosteoblastevaluatedfoundcomparableamongstconfirmedsimilarosteoblastsFurthermoredynamicdifferencesmineralappositionformationratesSurprisinglythree-point-bendingtestrevealedbonesstructurallylessstrongInterestinglysurfaceRanklIL-17aligandspromoteBonemarrowperformedindependentlyestablishcultureformedfewersmallermatureCtskMmp9ThusfunctionsextendbeyondembryonicchondrocytehypertrophyregulatingimpairsmediatedCartilageEndochondralLimbOsteoclastPostnatal

Similar Articles

Cited By