Predicting drug-target binding affinity with cross-scale graph contrastive learning.

Jingru Wang, Yihang Xiao, Xuequn Shang, Jiajie Peng
Author Information
  1. Jingru Wang: School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China.
  2. Yihang Xiao: School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China.
  3. Xuequn Shang: School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China.
  4. Jiajie Peng: School of Computer Science, Northwestern Polytechnical University, Xi'an, 710072, China.

Abstract

Identifying the binding affinity between a drug and its target is essential in drug discovery and repurposing. Numerous computational approaches have been proposed for understanding these interactions. However, most existing methods only utilize either the molecular structure information of drugs and targets or the interaction information of drug-target bipartite networks. They may fail to combine the molecule-scale and network-scale features to obtain high-quality representations. In this study, we propose CSCo-DTA, a novel cross-scale graph contrastive learning approach for drug-target binding affinity prediction. The proposed model combines features learned from the molecular scale and the network scale to capture information from both local and global perspectives. We conducted experiments on two benchmark datasets, and the proposed model outperformed existing state-of-art methods. The ablation experiment demonstrated the significance and efficacy of multi-scale features and cross-scale contrastive learning modules in improving the prediction performance. Moreover, we applied the CSCo-DTA to predict the novel potential targets for Erlotinib and validated the predicted targets with the molecular docking analysis.

Keywords

References

  1. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34929738]
  2. Int J Cancer. 2017 Jun 15;140(12):2805-2819 [PMID: 28295308]
  3. J Health Econ. 2016 May;47:20-33 [PMID: 26928437]
  4. Mol Pharm. 2021 Jul 5;18(7):2495-2506 [PMID: 34078087]
  5. J Med Chem. 2016 May 12;59(9):4035-61 [PMID: 26807648]
  6. Curr Opin Struct Biol. 2003 Jun;13(3):389-95 [PMID: 12831892]
  7. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34849575]
  8. Nat Rev Drug Discov. 2004 Nov;3(11):935-49 [PMID: 15520816]
  9. Molecules. 2015 Jun 12;20(6):10947-62 [PMID: 26076113]
  10. Bioinformatics. 2019 Aug 1;35(15):2677-2679 [PMID: 30590407]
  11. Bioinformatics. 2019 Jan 1;35(1):104-111 [PMID: 30561548]
  12. Int J Mol Sci. 2016 Jan 26;17(2): [PMID: 26821017]
  13. Brief Bioinform. 2020 May 21;21(3):919-935 [PMID: 31155636]
  14. Bioinformatics. 2018 Sep 1;34(17):i821-i829 [PMID: 30423097]
  15. Brief Bioinform. 2021 Mar 22;22(2):2141-2150 [PMID: 32367110]
  16. Ann Oncol. 2007 Jun;18 Suppl 6:vi35-41 [PMID: 17591829]
  17. Bioinformatics. 2021 May 23;37(8):1140-1147 [PMID: 33119053]
  18. J Pharm Anal. 2018 Jun;8(3):147-152 [PMID: 29922482]
  19. Nat Rev Clin Oncol. 2012 Feb 28;9(4):215-22 [PMID: 22371130]
  20. JAMA. 2020 Mar 03;323(9):844-853 [PMID: 32125404]
  21. RSC Adv. 2020 Jun 1;10(35):20701-20712 [PMID: 35517730]
  22. Anal Chem. 2012 Sep 18;84(18):7721-8 [PMID: 22928545]
  23. Nature. 2020 Apr;580(7805):663-668 [PMID: 32152607]
  24. J Cheminform. 2017 Apr 18;9(1):24 [PMID: 29086119]
  25. Drug Saf. 2011 Mar 1;34(3):175-86 [PMID: 21332242]
  26. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 34373895]
  27. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  28. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33866349]
  29. Nat Commun. 2021 Nov 22;12(1):6775 [PMID: 34811351]
  30. Nat Rev Drug Discov. 2011 May;10(5):328-9 [PMID: 21532551]
  31. Nat Biotechnol. 2011 Oct 30;29(11):1046-51 [PMID: 22037378]
  32. Nat Rev Drug Discov. 2022 Feb;21(2):99-114 [PMID: 34702990]
  33. Mol Inform. 2019 Jun;38(6):e1800082 [PMID: 30844132]
  34. Chem Sci. 2020 Jan 13;11(7):1775-1797 [PMID: 34123272]
  35. J Chem Inf Model. 2007 Nov-Dec;47(6):2159-71 [PMID: 17985863]
  36. Curr Med Chem. 2019;26(21):3838-3873 [PMID: 29110597]
  37. Nat Commun. 2017 Sep 18;8(1):573 [PMID: 28924171]
  38. Nat Rev Drug Discov. 2002 Jan;1(1):45-54 [PMID: 12119609]
  39. J Mol Biol. 1981 Mar 25;147(1):195-7 [PMID: 7265238]
  40. Brief Bioinform. 2021 Sep 2;22(5): [PMID: 33517357]
  41. J Chem Inf Model. 2014 Mar 24;54(3):735-43 [PMID: 24521231]
  42. Int J Mol Sci. 2021 Aug 20;22(16): [PMID: 34445696]
  43. Trends Pharmacol Sci. 2022 Feb;43(2):136-150 [PMID: 34895945]
  44. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019 Jul;11(4):e1554 [PMID: 30932351]
  45. Brief Bioinform. 2015 Mar;16(2):325-37 [PMID: 24723570]
  46. JAMA Intern Med. 2018 Apr 1;178(4):587-588 [PMID: 29610870]
  47. Brief Bioinform. 2020 Sep 25;21(5):1663-1675 [PMID: 31711157]
  48. Brief Bioinform. 2022 Jan 17;23(1): [PMID: 34661237]

Grants

  1. 62072376/National Natural Science Foundation of China
  2. 2022A1515010144/Guangdong Basic and Applied Basic Research Foundation
  3. 2022KJXX-75/Innovation Capability Support Program of Shaanxi
  4. D5000230056/Fundamental Research Funds for the Central Universities

MeSH Term

Molecular Docking Simulation
Learning
Drug Delivery Systems
Drug Discovery

Word Cloud

Created with Highcharts 10.0.0bindingaffinitycross-scalecontrastivelearningdrugproposedmolecularinformationtargetsdrug-targetfeaturesgraphdiscoveryexistingmethodsCSCo-DTAnovelpredictionmodelscaleIdentifyingtargetessentialrepurposingNumerouscomputationalapproachesunderstandinginteractionsHoweverutilizeeitherstructuredrugsinteractionbipartitenetworksmayfailcombinemolecule-scalenetwork-scaleobtainhigh-qualityrepresentationsstudyproposeapproachcombineslearnednetworkcapturelocalglobalperspectivesconductedexperimentstwobenchmarkdatasetsoutperformedstate-of-artablationexperimentdemonstratedsignificanceefficacymulti-scalemodulesimprovingperformanceMoreoverappliedpredictpotentialErlotinibvalidatedpredicteddockinganalysisPredictingdrug–target

Similar Articles

Cited By