Carbon-Based Nanomaterials Decorated Electrospun Nanofibers in Biosensors: A Review.

Nur Melis Kilic, Sultan Sacide Gelen, Simge Er Zeybekler, Dilek Odaci
Author Information
  1. Nur Melis Kilic: Ege University, Faculty of Science Biochemistry Department, 35100 Bornova-Izmir, Turkey. ORCID
  2. Sultan Sacide Gelen: Ege University, Faculty of Science Biochemistry Department, 35100 Bornova-Izmir, Turkey.
  3. Simge Er Zeybekler: Ege University, Faculty of Science Biochemistry Department, 35100 Bornova-Izmir, Turkey.
  4. Dilek Odaci: Ege University, Faculty of Science Biochemistry Department, 35100 Bornova-Izmir, Turkey. ORCID

Abstract

Nanomaterials have revolutionized scientific research due to their exceptional physical and chemical capabilities. Carbon-based nanomaterials such as graphene and its derivates have excellent electrical, optical, thermal, physical, and chemical properties that have made them indispensable in several industries worldwide, including medicine, electronics, and energy. By incorporating carbon-based nanomaterials as nanofillers in electrospun nanofibers (ESNFs), smoother and highly conductive nanofibers can be achieved that possess a large surface area and porosity. This approach provides a superior alternative to traditional materials in the development of improved biosensors. Carbon-based ESNFs, among the most exciting new-generation materials, have many applications, including filtration, pharmaceuticals, biosensors, and membranes. The electrospinning technique is a highly efficient and cost-effective method for producing desired nanofibers compared to other methods. Various types of natural and synthetic organic polymers have been successfully utilized in solution electrospinning to produce nanofibers directly. To create diagnostics devices, various biomolecules like antibodies, enzymes, aptamers, ligands, and even cells can be bound to the surface of nanofibers. Electrospun nanofibers can serve as an immobilization matrix to create a biofunctional surface. Thus, biosensors with desired features can be produced in this way. This study comprehensively reviews biosensors that integrate nanodiamonds, fullerenes, carbon nanotubes, graphene oxide, and carbon dots into electrospun nanofibers.

References

  1. Anal Bioanal Chem. 2020 Sep;412(22):5315-5327 [PMID: 32533225]
  2. Chem Soc Rev. 2015 Jan 7;44(1):362-81 [PMID: 25316556]
  3. Int J Nanomedicine. 2007;2(4):639-49 [PMID: 18203430]
  4. ACS Appl Mater Interfaces. 2023 May 24;15(20):24109-24119 [PMID: 37184103]
  5. Materials (Basel). 2022 Jan 28;15(3): [PMID: 35160958]
  6. ACS Cent Sci. 2020 Dec 23;6(12):2179-2195 [PMID: 33376780]
  7. Mater Sci Eng C Mater Biol Appl. 2019 Aug;101:352-359 [PMID: 31029328]
  8. Nanomaterials (Basel). 2022 Oct 28;12(21): [PMID: 36364587]
  9. Bioelectrochemistry. 2022 Jun;145:108083 [PMID: 35150998]
  10. Anal Chim Acta. 2007 Jul 30;597(1):82-9 [PMID: 17658316]
  11. Nanoscale. 2016 Feb 7;8(5):2532-43 [PMID: 26757977]
  12. Materials (Basel). 2018 Feb 13;11(2): [PMID: 29438327]
  13. Nanoscale. 2019 Apr 25;11(17):8616-8625 [PMID: 30994685]
  14. Chem Rev. 2019 Apr 24;119(8):5298-5415 [PMID: 30916938]
  15. Biosensors (Basel). 2021 Oct 10;11(10): [PMID: 34677340]
  16. ACS Sens. 2019 Jul 26;4(7):1732-1748 [PMID: 31267734]
  17. Biosens Bioelectron. 2021 Jan 1;171:112690 [PMID: 33049561]
  18. ACS Appl Mater Interfaces. 2019 Jul 17;11(28):25465-25473 [PMID: 31268646]
  19. Biosensors (Basel). 2022 Dec 19;12(12): [PMID: 36551148]
  20. J Mater Chem B. 2015 Mar 28;3(12):2487-2496 [PMID: 32262123]
  21. ACS Omega. 2018 Sep 30;3(9):12270-12283 [PMID: 30320292]
  22. Chem Rev. 2016 Oct 12;116(19):11967-12028 [PMID: 27564453]
  23. Adv Colloid Interface Sci. 2019 Jul;269:122-151 [PMID: 31082543]
  24. RSC Adv. 2020 Apr 17;10(26):15328-15345 [PMID: 35495479]
  25. ACS Omega. 2019 Mar 31;4(3):5044-5051 [PMID: 30949614]
  26. Mikrochim Acta. 2019 Dec 3;187(1):5 [PMID: 31797120]
  27. Biosens Bioelectron. 2019 Sep 15;141:111201 [PMID: 31302426]
  28. Sci Bull (Beijing). 2022 Jan 30;67(2):151-160 [PMID: 36546008]
  29. Biosens Bioelectron. 2021 Mar 1;175:112836 [PMID: 33272868]
  30. Small. 2009 Nov;5(21):2349-70 [PMID: 19771565]
  31. Anal Chem. 2005 May 15;77(10):3183-8 [PMID: 15889907]
  32. Sensors (Basel). 2019 Aug 17;19(16): [PMID: 31426538]
  33. ACS Omega. 2019 Aug 28;4(11):14633-14639 [PMID: 31528819]
  34. Anal Chim Acta. 2015 Aug 5;887:17-37 [PMID: 26320782]
  35. Polymers (Basel). 2022 May 21;14(10): [PMID: 35631984]
  36. J Colloid Interface Sci. 2018 Jan 1;509:275-284 [PMID: 28915485]
  37. ACS Appl Mater Interfaces. 2015 Mar 4;7(8):4784-90 [PMID: 25644325]
  38. Polymers (Basel). 2020 Jun 20;12(6): [PMID: 32575746]
  39. Int J Biol Macromol. 2023 Sep 30;249:126041 [PMID: 37516227]
  40. Bioelectrochemistry. 2020 Jun;133:107489 [PMID: 32097878]
  41. Adv Mater. 2020 Apr;32(17):e1906641 [PMID: 32191372]
  42. Nature. 2019 Feb;566(7742):89-93 [PMID: 30664747]
  43. Nanoscale. 2016 Aug 25;8(34):15414-47 [PMID: 27531643]
  44. Talanta. 2018 May 15;182:178-186 [PMID: 29501138]
  45. Talanta. 2022 Aug 15;246:123454 [PMID: 35462245]
  46. ACS Appl Mater Interfaces. 2015 Apr 1;7(12):7041-8 [PMID: 25757413]
  47. Sensors (Basel). 2020 Feb 16;20(4): [PMID: 32079119]
  48. J Mater Chem B. 2015 Apr 7;3(13):2651-2659 [PMID: 32262913]
  49. Mater Sci Eng C Mater Biol Appl. 2020 Feb;107:110273 [PMID: 31761219]
  50. Biosensors (Basel). 2022 Dec 16;12(12): [PMID: 36551142]
  51. Enzyme Microb Technol. 2023 Mar;164:110178 [PMID: 36566669]
  52. ACS Appl Mater Interfaces. 2020 Oct 28;12(43):48408-48419 [PMID: 33047948]
  53. Int J Mol Sci. 2023 Jan 07;24(2): [PMID: 36674734]
  54. ACS Omega. 2023 Jan 30;8(6):5776-5786 [PMID: 36816687]
  55. Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3859-3864 [PMID: 30637898]
  56. Eur J Pharm Sci. 2018 Sep 15;122:195-204 [PMID: 30008429]
  57. ACS Omega. 2017 Oct 31;2(10):6975-6983 [PMID: 30023536]
  58. Chem Soc Rev. 2019 Apr 15;48(8):2315-2337 [PMID: 30882820]
  59. Analyst. 2016 Apr 25;141(9):2619-28 [PMID: 26797087]
  60. ACS Nano. 2023 Jan 4;: [PMID: 36599026]
  61. Sci Rep. 2016 Mar 24;6:23325 [PMID: 27011265]
  62. J Nanosci Nanotechnol. 2015 Feb;15(2):1060-9 [PMID: 26353613]
  63. Small. 2019 May;15(22):e1900455 [PMID: 31012244]
  64. Int J Nanomedicine. 2022 Sep 12;17:4137-4162 [PMID: 36118177]
  65. Talanta. 2023 Aug 1;260:124630 [PMID: 37178675]
  66. Biomed Pharmacother. 2017 Mar;87:209-222 [PMID: 28061404]
  67. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S973-S981 [PMID: 30314411]
  68. Small. 2020 Oct;16(41):e2002435 [PMID: 32954651]
  69. Biosens Bioelectron. 2008 Jan 18;23(6):771-9 [PMID: 17905578]
  70. Nanomaterials (Basel). 2020 Jan 15;10(1): [PMID: 31952146]
  71. Sensors (Basel). 2018 May 25;18(6): [PMID: 29799505]
  72. Chem Commun (Camb). 2015 Jul 4;51(52):10506-9 [PMID: 26037709]
  73. Anal Chim Acta. 2021 Oct 16;1182:338909 [PMID: 34602194]
  74. Biosens Bioelectron. 2017 Mar 15;89(Pt 1):72-84 [PMID: 26856633]
  75. J Mech Behav Biomed Mater. 2019 Aug;96:118-124 [PMID: 31035062]
  76. Adv Sci (Weinh). 2019 Sep 30;6(23):1901316 [PMID: 31832313]
  77. Mikrochim Acta. 2018 May 7;185(6):283 [PMID: 29736826]
  78. Compr Rev Food Sci Food Saf. 2020 Mar;19(2):479-502 [PMID: 33325166]
  79. Talanta. 2023 Dec 1;265:124844 [PMID: 37352780]
  80. RSC Adv. 2022 Aug 23;12(37):23808-23828 [PMID: 36093244]
  81. Materials (Basel). 2019 Jul 07;12(13): [PMID: 31284695]
  82. Anal Methods. 2020 Jul 28;12(28):3670-3681 [PMID: 32701088]

Word Cloud

Created with Highcharts 10.0.0nanofiberscanbiosensorssurfaceNanomaterialsphysicalchemicalCarbon-basednanomaterialsgrapheneincludingelectrospunESNFshighlymaterialselectrospinningdesiredcreateElectrospuncarbonrevolutionizedscientificresearchdueexceptionalcapabilitiesderivatesexcellentelectricalopticalthermalpropertiesmadeindispensableseveralindustriesworldwidemedicineelectronicsenergyincorporatingcarbon-basednanofillerssmootherconductiveachievedpossesslargeareaporosityapproachprovidessuperioralternativetraditionaldevelopmentimprovedamongexcitingnew-generationmanyapplicationsfiltrationpharmaceuticalsmembranestechniqueefficientcost-effectivemethodproducingcomparedmethodsVarioustypesnaturalsyntheticorganicpolymerssuccessfullyutilizedsolutionproducedirectlydiagnosticsdevicesvariousbiomoleculeslikeantibodiesenzymesaptamersligandsevencellsboundserveimmobilizationmatrixbiofunctionalThusfeaturesproducedwaystudycomprehensivelyreviewsintegratenanodiamondsfullerenesnanotubesoxidedotsCarbon-BasedDecoratedNanofibersBiosensors:Review

Similar Articles

Cited By