Photoactivatable Nanobody Conjugate Dimerizer Temporally Resolves Tiam1-Rac1 Signaling Axis.

Chengjian Zhou, Huiping He, Xi Chen
Author Information
  1. Chengjian Zhou: Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology, Harbin, 150001, P. R. China.
  2. Huiping He: Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology, Harbin, 150001, P. R. China.
  3. Xi Chen: Laboratory of Chemical Biology and Frontier Biotechnologies, The HIT Center for Life Sciences (HCLS), Harbin Institute of Technology, Harbin, 150001, P. R. China. ORCID

Abstract

The precise spatiotemporal dynamics of protein activities play a crucial role in cell signaling pathways. To control cellular functions in a spatiotemporal manner, a powerful method called photoactivatable chemically induced dimerization (pCID) is used. In this study, photoactivatable nanobody conjugate inducers of dimerization (PANCIDs) is introduced, which combine pCID with nanobody technology. A PANCID consists of a nanobody module that directly binds to an antigenic target, a photocaged small molecule ligand, and a cyclic decaarginine (cR *) cell-penetrating peptide (CPP) for efficient nonendocytic intracellular delivery. Therefore, PANCID photodimerizers also benefit from nanobodies, such as their high affinities (in the nm or pm range), specificities, and ability to modulate endogenous proteins. Additionally it is demonstrated that the nanobody moiety can be easily replaced with alternative ones, expanding the potential applications. By using PANCIDs, the dynamics of the Tiam1-Rac1 signaling cascade is investigated and made an interesting finding. It is found that Rac1 and Tiam1 exhibit distinct behaviors in this axis, acting as time-resolved "molecular oscillators" that transit between different functions in the signaling cascade when activated either slowly or rapidly.

Keywords

References

  1. Nature. 2009 Sep 3;461(7260):104-8 [PMID: 19693014]
  2. Nat Chem. 2023 May;15(5):694-704 [PMID: 37069270]
  3. Angew Chem Int Ed Engl. 2018 Mar 5;57(11):2768-2798 [PMID: 28521066]
  4. Chemistry. 2019 Sep 25;25(54):12452-12463 [PMID: 31304989]
  5. Chembiochem. 2022 Aug 17;23(16):e202200209 [PMID: 35599237]
  6. ACS Chem Biol. 2021 Aug 20;16(8):1557-1565 [PMID: 34339163]
  7. Nat Chem Biol. 2012 Mar 25;8(5):465-70 [PMID: 22446836]
  8. Nat Chem Biol. 2022 Jan;18(1):64-69 [PMID: 34934192]
  9. Adv Sci (Weinh). 2024 Mar;11(11):e2307549 [PMID: 38225743]
  10. Curr Opin Chem Biol. 2015 Oct;28:194-201 [PMID: 26431673]
  11. Nat Cell Biol. 2019 Jun;21(6):768-777 [PMID: 31061466]
  12. Angew Chem Int Ed Engl. 2018 Aug 6;57(32):10226-10230 [PMID: 29944203]
  13. Sci Signal. 2011 Mar 15;4(164):rs2 [PMID: 21406691]
  14. Angew Chem Int Ed Engl. 2018 Jun 4;57(23):6796-6799 [PMID: 29637703]
  15. Nat Methods. 2023 Mar;20(3):432-441 [PMID: 36823330]
  16. Proc Natl Acad Sci U S A. 2022 Mar 1;119(9): [PMID: 35210365]
  17. Angew Chem Int Ed Engl. 2020 Jan 20;59(4):1506-1510 [PMID: 31755215]
  18. Angew Chem Int Ed Engl. 2017 May 15;56(21):5916-5920 [PMID: 28370940]
  19. Protein Sci. 2010 Dec;19(12):2389-401 [PMID: 20945358]
  20. Nat Methods. 2023 Jun;20(6):908-917 [PMID: 37188954]
  21. Bioorg Med Chem Lett. 2022 Sep 15;72:128865 [PMID: 35738351]
  22. Cell Rep. 2021 Nov 9;37(6):109979 [PMID: 34758330]
  23. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):E690-7 [PMID: 22366317]
  24. Nat Biotechnol. 2019 Oct;37(10):1209-1216 [PMID: 31501561]
  25. J Am Chem Soc. 2021 Mar 17;143(10):3665-3670 [PMID: 33684293]
  26. Nat Methods. 2014 Dec;11(12):1253-60 [PMID: 25362362]
  27. Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10049-55 [PMID: 25065762]
  28. Science. 2017 Nov 3;358(6363):668-672 [PMID: 29097549]
  29. J Am Chem Soc. 2018 Sep 26;140(38):11926-11930 [PMID: 30196699]
  30. Angew Chem Int Ed Engl. 2014 Apr 25;53(18):4717-20 [PMID: 24677313]
  31. FEBS Lett. 2003 Jul 3;546(1):11-6 [PMID: 12829230]
  32. Nat Commun. 2023 Mar 24;14(1):1635 [PMID: 36964170]
  33. Science. 2018 Mar 9;359(6380): [PMID: 29590011]
  34. Angew Chem Int Ed Engl. 2018 Sep 10;57(37):11993-11997 [PMID: 30048030]
  35. Nat Methods. 2005 Jun;2(6):415-8 [PMID: 15908919]
  36. Nat Commun. 2022 Jul 25;13(1):4303 [PMID: 35879298]
  37. J Am Chem Soc. 2020 Oct 14;142(41):17457-17468 [PMID: 32966062]
  38. Angew Chem Int Ed Engl. 2021 May 10;60(20):11378-11383 [PMID: 33644979]
  39. J Med Chem. 1985 Mar;28(3):303-11 [PMID: 3973902]
  40. Mol Cancer Ther. 2013 Oct;12(10):1925-34 [PMID: 24072884]
  41. J Am Chem Soc. 2011 Jan 26;133(3):420-3 [PMID: 21162531]
  42. Annu Rev Immunol. 2018 Apr 26;36:489-517 [PMID: 29400998]
  43. J Biol Chem. 2010 Jul 2;285(27):20541-6 [PMID: 20444703]
  44. J Biol Chem. 2017 Oct 27;292(43):17777-17793 [PMID: 28882897]
  45. EMBO J. 2013 Aug 14;32(16):2287-99 [PMID: 23881099]
  46. Nat Commun. 2014 Nov 17;5:5475 [PMID: 25400104]
  47. Cell Signal. 2014 Mar;26(3):483-91 [PMID: 24308970]
  48. Biochem Pharmacol. 2017 May 15;132:9-17 [PMID: 28202288]
  49. Nat Commun. 2020 Aug 13;11(1):4044 [PMID: 32792536]

Grants

  1. 32071410/National Natural Science Foundation of China
  2. YQ2022B004/Natural Science Foundation of Heilongjiang Province of China
  3. /Harbin Institute of Technology
  4. /Overseas Outstanding Young Talents Program of China

MeSH Term

Guanine Nucleotide Exchange Factors
rac1 GTP-Binding Protein
Signal Transduction

Chemicals

Guanine Nucleotide Exchange Factors
rac1 GTP-Binding Protein

Word Cloud

Created with Highcharts 10.0.0nanobodysignalingdimerizationspatiotemporaldynamicscontrolfunctionsphotoactivatablechemicallyinducedpCIDPANCIDsPANCIDTiam1-Rac1cascadepreciseproteinactivitiesplaycrucialrolecellpathwayscellularmannerpowerfulmethodcalledusedstudyconjugateinducersintroducedcombinetechnologyconsistsmoduledirectlybindsantigenictargetphotocagedsmallmoleculeligandcyclicdecaargininecR*cell-penetratingpeptideCPPefficientnonendocyticintracellulardeliveryThereforephotodimerizersalsobenefitnanobodieshighaffinitiesnmpmrangespecificitiesabilitymodulateendogenousproteinsAdditionallydemonstratedmoietycaneasilyreplacedalternativeonesexpandingpotentialapplicationsusinginvestigatedmadeinterestingfindingfoundRac1Tiam1exhibitdistinctbehaviorsaxisactingtime-resolved"molecularoscillators"transitdifferentactivatedeitherslowlyrapidlyPhotoactivatableNanobodyConjugateDimerizerTemporallyResolvesSignalingAxisactincytoskeletonapoptosisproximitychemo-optogeneticlamellipodialightoptochemicalbiology

Similar Articles

Cited By