Quantitative risk analysis of sediment heavy metals using the positive matrix factorization-based ecological risk index method: a case of the Kuye River, China.

Yaning Zhang, Xijun Wu, Ying Dong, Jing Liu
Author Information
  1. Yaning Zhang: School of Civil Engineering, Yulin University, Yulin, 719000, China.
  2. Xijun Wu: School of Civil Engineering, Yulin University, Yulin, 719000, China. wxj0826@163.com.
  3. Ying Dong: School of Civil Engineering, Yulin University, Yulin, 719000, China.
  4. Jing Liu: School of Civil Engineering, Yulin University, Yulin, 719000, China.

Abstract

Identifying the sources of heavy metals (HMs) in river sediments is crucial to effectively mitigate sediment HM pollution and control its associated ecological risks in coal-mining areas. In this study, ecological risks resulting from different pollution sources were evaluated using an integrated method combining the positive matrix factorization (PMF) and the potential ecological risk index (RI) model. A total of 59 sediment samples were collected from the Kuye River and analyzed for eight HMs (Zn, Cr, Ni, Cu, Pb, As, Cd, and Hg). The obtained results showed that the sediment HM contents were higher than the corresponding soil background values in Shaanxi Province. The average sediment Hg content was 3.42 times higher than the corresponding background value. The PMF results indicated that HMs in the sediments were mainly derived from industrial, traffic, agricultural, and coal-mining sources. The RI values ranged from 26.15 to 483.70. Hg was the major contributor (75%) to the ecological risk in the vicinity of the Yanjiata Industrial Park. According to the PMF-based RI model, coal-mining activities exhibited the strongest impact on the river ecosystem (48.79%), followed, respectively, by traffic (34.41%), industrial (12.70%), and agricultural (4.10%) activities. These results indicated that the major anthropogenic sources contributing to the HM contents in the sediments are not necessarily those posing the greatest ecological risks. The proposed integrated approach in this study was useful in evaluating the ecological risks associated with different anthropogenic sources in the Kuye River, providing valuable suggestions for reducing sediment HM pollution and effectively protecting river ecosystems.

Keywords

References

  1. Abliz, A., Shi, Q., Keyimu, M., & Sawut, R. (2018). Spatial distribution, source, and risk assessment of soil toxic metals in the coal-mining region of northwestern China. Arabian Journal of Geosciences, 11(24), 1–3. https://doi.org/10.1007/s12517-018-4152-8 [DOI: 10.1007/s12517-018-4152-8]
  2. Belon, E., Boisson, M., Deportes, I. Z., Eglin, T. K., Feix, I., Bispo, A. O., Galsomies, L., Leblond, S., & Guellier, C. R. (2012). An inventory of trace elements inputs to French agricultural soils. Science of The Total Environment, 439, 87–95. https://doi.org/10.1016/j.scitotenv.2012.09.011 [DOI: 10.1016/j.scitotenv.2012.09.011]
  3. Cechinel, M. A. P., Mayer, D. A., Pozdniakova, T. A., Mazur, L. P., Boaventura, R. A. R., de Souza, A. A. U., & Vilar, V. J. P. (2016). Removal of metal ions from a petrochemical wastewater using brown macro-algae as natural cation-exchangers. Chemical Engineering Journal, 286, 1–15. https://doi.org/10.1016/j.cej.2015.10.042 [DOI: 10.1016/j.cej.2015.10.042]
  4. Chen, X., Guo, Q., Liu, P., & Liu, Y. (2016). Distribution and risk assessment of heavy metal pollution in surface sediment of Kuye River around coal mining area in Shaanxi Province. China. Earth and Environment, 44(3), 370–375. (in Chinese).
  5. China Environmental Monitoring Station. (1990). Background values of soil elements in China. Beijing: China Environmental Science Press, 330–479
  6. Deng, J., Zhang, J., Yin, H., Hu, W., & Wang, X. (2020). Ecological risk assessment and source apportionment of metals in the surface sediments of river systems in Lake Taihu basin. China. Environmental Science and Pollution Research, 27(21), 25943. https://doi.org/10.1007/s11356-019-05719-5 [DOI: 10.1007/s11356-019-05719-5]
  7. Farkhondeh, T., Naseri, K., Esform, A., Aramjoo, H., & Naghizadeh, A. (2020). Drinking water heavy metal toxicity and chronic kidney diseases: A systematic review. Reviews on Environmental Health, 36(3), 359–366. https://doi.org/10.1515/reveh-2020-0110 [DOI: 10.1515/reveh-2020-0110]
  8. Feng, J., Zhu, X., Wu, H., Ning, C., & Lin, G. (2017). Distribution and ecological risk assessment of heavy metals in surface sediments of a typical restored mangrove–Aquaculture wetland in Shenzhen. China. Marine Pollution Bulletin, 124(2), 1033–1039. https://doi.org/10.1016/j.marpolbul.2017.01.004 [DOI: 10.1016/j.marpolbul.2017.01.004]
  9. Gao, B., Zhou, H., Liang, X., & Tu, X. (2013). Cd isotopes as a potential source tracer of metal pollution in river sediments. Environmental Pollution, 181, 340–343. https://doi.org/10.1016/j.envpol.2013.05.048 [DOI: 10.1016/j.envpol.2013.05.048]
  10. Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., & Luo, H. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197. https://doi.org/10.1016/j.chemosphere.2017.10.15 [DOI: 10.1016/j.chemosphere.2017.10.15]
  11. Hakanson, L. (1980). An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8 [DOI: 10.1016/0043-1354(80)90143-8]
  12. Hao, M., Zuo, Q., Li, J., Shi, S., Li, B., & Zhao, X. (2022). A comprehensive exploration on distribution, risk assessment, and source quantification of heavy metals in the multi-media environment from Shaying river basin. China. Ecotoxicology and Environmental Safety, 231, 113190. https://doi.org/10.1016/j.ecoenv.2022.113190 [DOI: 10.1016/j.ecoenv.2022.113190]
  13. Hoshyari, E., Hassanzadeh, N., Keshavarzi, B., Jaafarzadeh, N., & Rezaei, M. (2023). Spatial distribution, source apportionment, and ecological risk assessment of elements (PTEs, REEs, and ENs) in the surface soil of shiraz city (Iran) under different land-use types. Chemosphere, 311, 137045. https://doi.org/10.1016/j.chemosphere.2022.137045 [DOI: 10.1016/j.chemosphere.2022.137045]
  14. Hu, W., Wang, H., Dong, L., Huang, B., Borggaard, O. K., Bruun Hansen, H. C., & Holm, P. E. (2018). Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environmental Pollution, 237, 650–661. https://doi.org/10.1016/j.envpol.2018.02.070 [DOI: 10.1016/j.envpol.2018.02.070]
  15. Huang, J., Wu, Y., Sun, J., Li, X., Geng, X., Zhao, M., & Fan, Z. (2021). Health risk assessment of heavy metal(loid)s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. Journal of Hazardous Materials, 415, 125629. https://doi.org/10.1016/j.jhazmat.2021.125629 [DOI: 10.1016/j.jhazmat.2021.125629]
  16. Jiang, H.-H., Cai, L.-M., Wen, H.-H., Hu, G.-C., Chen, L.-G., & Luo, J. (2019). An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Science of The Total Environment, 701, 134466. https://doi.org/10.1016/j.scitotenv.2019.134466 [DOI: 10.1016/j.scitotenv.2019.134466]
  17. Jiang, H. H., Cai, L. M., Wen, H. H., & Luo, J. (2020). Characterizing pollution and source identification of heavy metals in soils using geochemical baseline and PMF approach. Scientific Reports, 10(1), 6460. https://doi.org/10.1038/s41598-020-63604-5 [DOI: 10.1038/s41598-020-63604-5]
  18. Kumar, S., Akash, P. B., Islam, R., & Macfarlane, G. R. (2022). Pollution status and ecological risk assessment of metal(loid)s in the sediments of the world’s largest mangrove forest: A data synthesis in the Sundarbans. Marine Pollution Bulletin, 187, 114514. https://doi.org/10.1016/j.marpolbul.2022.114514 [DOI: 10.1016/j.marpolbul.2022.114514]
  19. Li, D., Yu, R., Chen, J., Leng, X., & An, S. (2021). Ecological risk of heavy metals in lake sediments of China: A national-scale integrated analysis. Journal of Cleaner Production, 334(4), 130206. https://doi.org/10.1016/j.jclepro.2021.130206 [DOI: 10.1016/j.jclepro.2021.130206]
  20. Li, K., Gu, Y., Li, M., Zhao, L., Ding, J., Lun, Z., & Tian, W. (2018). Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in Henan, Central China. International Biodeterioration & Biodegradation, 128, 148–154. https://doi.org/10.1016/j.ibiod.2017.03.026 [DOI: 10.1016/j.ibiod.2017.03.026]
  21. Liu, B., Wang, J., Xu, M., Zhao, L., & Wang, Z. (2019). Spatial distribution, source apportionment and ecological risk assessment of heavy metals in the sediments of Haizhou Bay national ocean park. China. Marine Pollution Bulletin, 149, 110651. https://doi.org/10.1016/j.marpolbul.2019.110651 [DOI: 10.1016/j.marpolbul.2019.110651]
  22. Liu, J., Liu, Y. J., Liu, Z., Zhang, A., & Liu, Y. (2018). Source apportionment of soil PAHs and human health exposure risks quantification from sources: The Yulin National Energy and Chemical Industry Base, China as case study. Environmental Geochemistry and Health., 41, 617–32. https://doi.org/10.1007/s10653-018-0155-3 [DOI: 10.1007/s10653-018-0155-3]
  23. Liu, Y., Lei, S., & Chen, X. (2016). Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in East China. Human and Ecological Risk Assessment: An International Journal, 22(6), 1359–1374. https://doi.org/10.1080/10807039.2016.1174924 [DOI: 10.1080/10807039.2016.1174924]
  24. Lu, S., Wang, Y., Teng, Y., & Yu, X. (2015). Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan. Environmental Monitoring & Assessment, 187(10), 627. https://doi.org/10.1007/s10661-015-4835-5 [DOI: 10.1007/s10661-015-4835-5]
  25. Magesh, N. S., Tiwari, A., Botsa, S. M., & da Lima Leitao, T. (2021). Hazardous heavy metals in the pristine lacustrine systems of Antarctica: Insights from PMF model and ERA techniques. Journal of Hazardous Materials, 412, 125263. https://doi.org/10.1016/j.jhazmat.2021.125263 [DOI: 10.1016/j.jhazmat.2021.125263]
  26. Men, C., Liu, R., Xu, L., Wang, Q., Guo, L., Miao, Y., & Shen, Z. (2019). Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing China. Journal of Hazardous Materials, 388, 121763. https://doi.org/10.1016/j.jhazmat.2019.121763 [DOI: 10.1016/j.jhazmat.2019.121763]
  27. Niksa, S., Padak, B., Krishnakumar, B., & Naik, C. V. (2010). Process Chemistry of Br Addition to Utility Flue Gas for Hg Emissions Control. Energy & Fuels, 24(2), 1020–1029. https://doi.org/10.1021/ef901106t [DOI: 10.1021/ef901106t]
  28. Pandey, B., Agrawal, M., & Singh, S. (2015). Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments, 16(1), 159–168. https://doi.org/10.1007/s11368-015-1173-8 [DOI: 10.1007/s11368-015-1173-8]
  29. Pekey, H., & Doğan, G. (2013). Application of positive matrix factorisation for the source apportionment of heavy metals in sediments: A comparison with a previous factor analysis study. Microchemical Journal, 106, 233–237. https://doi.org/10.1016/j.microc.2012.07.007 [DOI: 10.1016/j.microc.2012.07.007]
  30. Peter, P. O., Rashid, A., Nkinahamira, F., Wang, H., Sun, Q., Gad, M., & Hu, A. (2021). Integrated assessment of major and trace elements in surface and core sediments from an urban lagoon, China: Potential ecological risks and influencing factors. Marine Pollution Bulletin, 170, 112651. https://doi.org/10.1016/j.marpolbul.2021.112651 [DOI: 10.1016/j.marpolbul.2021.112651]
  31. Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., & Telmer, K. (2010). Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 10(13), 5951–5964. https://doi.org/10.5194/acp-10-5951-2010 [DOI: 10.5194/acp-10-5951-2010]
  32. Pizzol, M., Thomsen, M., Frohn, L. M., & Andersen, M. S. (2010). External costs of atmospheric Pb emissions: Valuation of neurotoxic impacts due to inhalation. Environmental Health, 9(1), 1–9. https://doi.org/10.1186/1476-069x-9-9 [DOI: 10.1186/1476-069x-9-9]
  33. Qu, M., Wang, Y., Huang, B., & Zhao, Y. (2018). Source apportionment of soil heavy metals using robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR) receptor model. Science of the Total Environment, 626, 203–210. https://doi.org/10.1016/j.scitotenv.2018.01.070 [DOI: 10.1016/j.scitotenv.2018.01.070]
  34. Scerri, M. M., Genga, A., Iacobellis, S., Delmaire, G., Giove, A., Siciliano, M., & Weinbruch, S. (2019). Investigating the plausibility of a PMF source apportionment solution derived using a smaller dataset: A case study from a receptor in a rural receptor in Apulia-South East Italy. Chemosphere, 236, 124376. https://doi.org/10.1016/j.chemosphere.2019.124376 [DOI: 10.1016/j.chemosphere.2019.124376]
  35. Schroeder, W. H., & Munthe, J. (1998). Atmospheric mercury—An overview. Atmospheric Environment, 32(5), 809–822. https://doi.org/10.1016/s1352-2310(97)00293-8 [DOI: 10.1016/s1352-2310(97)00293-8]
  36. Shazili, N. A. M., Yunus, K., Ahmad, A. S., Abdullah, N., & Rashid, M. K. A. (2006). Heavy metal pollution status in the Malaysian aquatic environment. Aquatic Ecosystem Health & Management, 9(2), 137–145. https://doi.org/10.1080/14634980600724023 [DOI: 10.1080/14634980600724023]
  37. Shi, W., Li, T., Feng, Y., Su, H., & Yang, Q. (2022a). Source apportionment and risk assessment for available occurrence forms of heavy metals in Dongdahe wetland sediments, southwest of China. Science of the Total Environment, 815, 152837. https://doi.org/10.1016/j.scitotenv.2021.152837 [DOI: 10.1016/j.scitotenv.2021.152837]
  38. Shi, X. M., Liu, S., Song, L., Lu, H. Z., et al. (2022b). Contamination and source-specific risk analysis of soil heavy metals in a typical coal industrial city, central China. The Science of the Total Environment, 836, 155694. https://doi.org/10.1016/j.scitotenv.2022.155694 [DOI: 10.1016/j.scitotenv.2022.155694]
  39. Tan, J., Duan, J., Ma, Y., He, K., Cheng, Y., Deng, S., Huang, Y., & Si-Tu, S. (2016). Long-term trends of chemical characteristics and sources of fine particle in Foshan city, Pearl River Delta: 2008–2014. Science of the Total Environment, 565, 519–528. https://doi.org/10.1016/j.scitotenv.2016.05.059 [DOI: 10.1016/j.scitotenv.2016.05.059]
  40. Wang, H.-Z., Cai, L.-M., Wang, Q.-S., Hu, G.-C., & Chen, L.-G. (2021). A comprehensive exploration of risk assessment and source quantification of potentially toxic elements in road dust: A case study from a large Cu smelter in central China. Catena, 196, 104930. https://doi.org/10.1016/j.catena.2020.104930 [DOI: 10.1016/j.catena.2020.104930]
  41. Wang, J., Feng, X., Anderson, C. W. N., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites–A review. Journal of Hazardous Materials, 221–222, 1–18. https://doi.org/10.1016/j.jhazmat.2012.04.035 [DOI: 10.1016/j.jhazmat.2012.04.035]
  42. Wang, J., Wu, H., Wei, W., Xu, C., Tan, X., & Lin, A. (2022). Health risk assessment of heavy metal(loid)s in the farmland of megalopolis in China by using APCS-MLR and PMF receptor models: Taking Huairou district of Beijing as an example. Science of The Total Environment, 835, 155313. https://doi.org/10.1016/j.scitotenv.2022.155313 [DOI: 10.1016/j.scitotenv.2022.155313]
  43. Wu, T., Sun, S., Fan, J., Lu, F., Guo, C., & Xu, J. (2022). Comparison of health risk from sources of perfluoroalkyl substances in Taihu lake for different years. Environmental Science, 43(9), 4513–4521.
  44. Wu, X., Dong, Y., Zhao, J., Liu, J., & Zhang, Y. (2023). Distribution, sources, and ecological risk assessment of polycyclic aromatic hydrocarbons in surface water in the coal mining area of northern Shaanxi. China. Environmental Science and Pollution Research, 30(17), 50496–50508. https://doi.org/10.1007/s11356-023-25932-7 [DOI: 10.1007/s11356-023-25932-7]
  45. Zhang, H., Zhang, F., Song, J., Tan, M. L., Kung, H., & Johnson, V. C. (2021). Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang. China. Environmental Research, 202, 111702. https://doi.org/10.1016/j.envres.2021.111702 [DOI: 10.1016/j.envres.2021.111702]

Grants

  1. 1517-2021SKJJB19/Yulin University Scientific Research Project
  2. 1517-2021JJJB13/Yulin University Scientific Research Project
  3. 51969031/National Natural Science Foundation of China
  4. 52169006/National Natural Science Foundation of China
  5. 2022TD-08/the Shaanxi Science and Technology Innovation Team
  6. 2019KFKT-13/the Open Fund of State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China
  7. YLKG-2022-10/the Yulin 'Scientists + Engineers' Team Project
  8. 22JS045/the Shaanxi Key Scientific Research Plan of Education Department

MeSH Term

Ecosystem
Rivers
Metals, Heavy
Mercury
China
Coal

Chemicals

Metals, Heavy
Mercury
Coal

Word Cloud

Created with Highcharts 10.0.0ecologicalsedimentsourcesrisksHMpollutionriskRIHMsriversedimentscoal-miningmodelKuyeRiverHgresultsheavymetalseffectivelyassociatedstudydifferentusingintegratedpositivematrixPMFindexcontentshighercorrespondingbackgroundvaluesindicatedindustrialtrafficagriculturalmajorPMF-basedactivitiesanthropogenicIdentifyingcrucialmitigatecontrolareasresultingevaluatedmethodcombiningfactorizationpotentialtotal59samplescollectedanalyzedeightZnCrNiCuPbCdobtainedshowedsoilShaanxiProvinceaveragecontent342timesvaluemainlyderivedranged261548370contributor75%vicinityYanjiataIndustrialParkAccordingexhibitedstrongestimpactecosystem4879%followedrespectively3441%1270%410%contributingnecessarilyposinggreatestproposedapproachusefulevaluatingprovidingvaluablesuggestionsreducingprotectingecosystemsQuantitativeanalysisfactorization-basedmethod:caseChinaCoal-miningPotentialSedimentSourceapportionment

Similar Articles

Cited By

No available data.