Proton-FLASH: effects of ultra-high dose rate irradiation on an in-vivo mouse ear model.
Sarah Rudigkeit, Thomas E Schmid, Annique C Dombrowsky, Jessica Stolz, Stefan Bartzsch, Ce-Belle Chen, Nicole Matejka, Matthias Sammer, Andreas Bergmaier, Günther Dollinger, Judith Reindl
Author Information
Sarah Rudigkeit: Institute of Applied Physics and Measurement Technologies, Universität der Bundeswehr München, Neubiberg, Germany.
Thomas E Schmid: Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany.
Annique C Dombrowsky: Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany.
Jessica Stolz: Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany.
Stefan Bartzsch: Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany.
Ce-Belle Chen: Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.
Nicole Matejka: Institute of Applied Physics and Measurement Technologies, Universität der Bundeswehr München, Neubiberg, Germany.
Matthias Sammer: Institute of Applied Physics and Measurement Technologies, Universität der Bundeswehr München, Neubiberg, Germany.
Andreas Bergmaier: Institute of Applied Physics and Measurement Technologies, Universität der Bundeswehr München, Neubiberg, Germany.
Günther Dollinger: Institute of Applied Physics and Measurement Technologies, Universität der Bundeswehr München, Neubiberg, Germany.
Judith Reindl: Institute of Applied Physics and Measurement Technologies, Universität der Bundeswehr München, Neubiberg, Germany. judith.reindl@unibw.de.
FLASH-radiotherapy may provide significant sparing of healthy tissue through ultra-high dose rates in protons, electrons, and x-rays while maintaining the tumor control. Key factors for the FLASH effect might be oxygen depletion, the immune system, and the irradiated blood volume, but none could be fully confirmed yet. Therefore, further investigations are necessary. We investigated the protective (tissue sparing) effect of FLASH in proton treatment using an in-vivo mouse ear model. The right ears of Balb/c mice were irradiated with 20 MeV protons at the ion microprobe SNAKE in Garching near Munich by using three dose rates (Conv = 0.06 Gy/s, Flash9 = 9.3 Gy/s and Flash930 = 930 Gy/s) at a total dose of 23 Gy or 33 Gy. The ear thickness, desquamation, and erythema combined in an inflammation score were measured for 180 days. The cytokines TGF-β1, TNF-α, IL1α, and IL1β were analyzed in the blood sampled in the first 4 weeks and at termination day. No differences in inflammation reactions were visible in the 23 Gy group for the different dose rates. In the 33 Gy group, the ear swelling and the inflammation score for Flash9 was reduced by (57 ± 12) % and (67 ± 17) % and for Flash930 by (40 ± 13) % and (50 ± 17) % compared to the Conv dose rate. No changes in the cytokines in the blood could be measured. However, an estimation of the irradiated blood volume demonstrates, that 100-times more blood is irradiated when using Conv compared to using Flash9 or Flash930. This indicates that blood might play a role in the underlying mechanisms in the protective effect of FLASH.
References
Delaney, G. P. & Barton, M. B. Evidence-based estimates of the demand for radiotherapy. Clin. Oncol. 27, 70–76 (2015).
[DOI: 10.1016/j.clon.2014.10.005]
Garibaldi, C. et al. Recent advances in radiation oncology. Ecancermedicalscience 11, 785 (2017).
[DOI: 10.3332/ecancer.2017.785]
Miller, K. D. et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin. 69, 363–385 (2019).
[DOI: 10.3322/caac.21565]
DeCesaris, C. M. et al. Quantification of acute skin toxicities in patients with breast cancer undergoing adjuvant proton versus photon radiation therapy: A single institutional experience. Int. J. Radiat. Oncol. Biol. Phys. 104, 1084–1090 (2019).
[DOI: 10.1016/j.ijrobp.2019.04.015]
Majeed, H. & Gupta, V. StatPearls. Adverse Effects Of Radiation Therapy (2021).
Favaudon, V. et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 6, 245ra93 (2014).
[DOI: 10.1126/scitranslmed.3008973]
Alaghband, Y. et al. Neuroprotection of radiosensitive juvenile mice by ultra-high dose rate FLASH irradiation. Cancers 12, 1671 (2020).
[DOI: 10.3390/cancers12061671]
Fouillade, C. et al. FLASH irradiation spares lung progenitor cells and limits the incidence of radio-induced senescence. Clin. Cancer Res. 26, 1497–1506 (2020).
[DOI: 10.1158/1078-0432.CCR-19-1440]
Levy, K. et al. Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Sci. Rep. 10, 21600 (2020).
[DOI: 10.1038/s41598-020-78017-7]
Simmons, D. A. et al. Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiother. Oncol. 139, 4–10 (2019).
[DOI: 10.1016/j.radonc.2019.06.006]
Soto, L. A. et al. FLASH irradiation results in reduced severe skin toxicity compared to conventional-dose-rate irradiation. Radiat. Res. 194, 618–624 (2020).
[DOI: 10.1667/RADE-20-00090]
Velalopoulou, A. et al. FLASH proton radiotherapy spares normal epithelial and mesenchymal tissues while preserving sarcoma response. Cancer Res. 81, 4808–4821 (2021).
[DOI: 10.1158/0008-5472.CAN-21-1500]
Vozenin, M.-C. et al. The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clin. Cancer Res. 25, 35–42 (2019).
[DOI: 10.1158/1078-0432.CCR-17-3375]
Cunningham, S. et al. FLASH proton pencil beam scanning irradiation minimizes radiation-induced leg contracture and skin toxicity in mice. Cancers 13, 1012 (2021).
[DOI: 10.3390/cancers13051012]
Spitz, D. R. et al. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses. Radiother. Oncol. 139, 23–27 (2019).
[DOI: 10.1016/j.radonc.2019.03.028]
Abolfath, R., Grosshans, D. & Mohan, R. Oxygen depletion in FLASH ultra-high-dose-rate radiotherapy: A molecular dynamics simulation. Med. Phys. 47, 6551–6561 (2020).
[DOI: 10.1002/mp.14548]
Jansen, J. et al. Does FLASH deplete oxygen? Experimental evaluation for photons, protons, and carbon ions. Med. Phys. 48, 3982–3990 (2021).
[DOI: 10.1002/mp.14917]
Cao, X. et al. Quantification of oxygen depletion during FLASH irradiation in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 111, 240–248 (2021).
[DOI: 10.1016/j.ijrobp.2021.03.056]
Tinganelli, W. et al. Ultra-high dose rate (FLASH) carbon ion irradiation: Dosimetry and first cell experiments. Int. J. Radiat. Oncol. Biol. Phys. 112, 1012–1022 (2022).
[DOI: 10.1016/j.ijrobp.2021.11.020]
Durante, M. et al. Measurements of the equivalent whole-body dose during radiation therapy by cytogenetic methods. Phys. Med. Biol. 44, 1289–1298 (1999).
[DOI: 10.1088/0031-9155/44/5/314]
Rama, N. et al. Improved tumor control through T-cell infiltration modulated by ultra-high dose rate proton FLASH using a clinical pencil beam scanning proton system. Int. J. Radiat. Oncol. Biol. Phys. 105, S164–S165 (2019).
[DOI: 10.1016/j.ijrobp.2019.06.187]
Sammer, M. et al. Normal tissue response of combined temporal and spatial fractionation in proton minibeam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 109, 76–83 (2021).
[DOI: 10.1016/j.ijrobp.2020.08.027]
Dombrowsky, A. C. et al. Acute skin damage and late radiation-induced fibrosis and inflammation in murine ears after high-dose irradiation. Cancers 11, 727 (2019).
[DOI: 10.3390/cancers11050727]
Sammer, M. et al. Beam size limit for pencil minibeam radiotherapy determined from side effects in an in-vivo mouse ear model. PLoS ONE 14, e0221454 (2019).
[DOI: 10.1371/journal.pone.0221454]
Sammer, M. et al. Proton pencil minibeam irradiation of an in-vivo mouse ear model spares healthy tissue dependent on beam size. PLoS ONE 14, e0224873 (2019).
[DOI: 10.1371/journal.pone.0224873]
Girst, S. et al. Proton minibeam radiation therapy reduces side effects in an in vivo mouse ear model. Int. J. Radiat. Oncol. Biol. Phys. 95, 234–241 (2016).
[DOI: 10.1016/j.ijrobp.2015.10.020]
Hable, V. et al. The live cell irradiation and observation setup at SNAKE. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267, 2090–2097 (2009).
[DOI: 10.1016/j.nimb.2009.03.071]
Scherthan, H. et al. Planar proton minibeam irradiation elicits spatially confined DNA damage in a human epidermis model. Cancers 14, 1545 (2022).
[DOI: 10.3390/cancers14061545]
Reinhardt, S. et al. Investigation of EBT2 and EBT3 films for proton dosimetry in the 4–20 MeV energy range. Radiat. Environ. Biophys. 54, 71–79 (2015).
[DOI: 10.1007/s00411-014-0581-2]
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25, 402–408 (2001).
[DOI: 10.1006/meth.2001.1262]
Vallentin, T. et al. A microbeam slit system for high beam currents. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 348, 43–47 (2015).
[DOI: 10.1016/j.nimb.2014.12.015]
Moylan, R., Aland, T. & Kairn, T. Dosimetric accuracy of Gafchromic EBT2 and EBT3 film for in vivo dosimetry. Austral. Phys. Eng. Sci. Med. 36, 331–337 (2013).
[DOI: 10.1007/s13246-013-0206-0]
Bergmaier, A., Dollinger, G. & Frey, C. M. A compact ΔE-Eres detector for elastic recoil detection with high sensitivity. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 136–138, 638–643 (1998).
[DOI: 10.1016/S0168-583X(97)00877-X]
Liu, C., Liang, Y. & Wang, L. Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation, and blood flow in sub-microseconds. Photoacoustics 17, 100156 (2020).
[DOI: 10.1016/j.pacs.2019.100156]
Vácha, J. Blood volume in inbred strain BALB/c, CBA/J and C57BL/10 mice determined by means of 59Fe-labelled red cells and 59Fe bound to transferrin. Physiologia Bohemoslovaca 24, 413–419 (1975).
[PMID: 127187]
Masterson, M. E. & Febo, R. Pretransfusion blood irradiation: clinical rationale and dosimetric considerations. Med. Phys. 19, 649–657 (1992).
[DOI: 10.1118/1.596809]
Fenech, M. F., Dunaiski, V., Osborne, Y. & Morley, A. A. The cytokinesis-block micronucleus assay as a biological dosimeter in spleen and peripheral blood lymphocytes of the mouse following acute whole-body irradiation. Mutat. Res. 263, 119–126 (1991).
[DOI: 10.1016/0165-7992(91)90069-G]