Radiation effect on stagnation point flow of Casson nanofluid past a stretching plate/cylinder.

U S Mahabaleshwar, T Maranna, Manoranjan Mishra, M Hatami, Bengt Sunden
Author Information
  1. U S Mahabaleshwar: Department of Studies in Mathematics, Davangere University, Shivagangothri, Davangere, Karnataka, 577007, India.
  2. T Maranna: Department of Studies in Mathematics, Davangere University, Shivagangothri, Davangere, Karnataka, 577007, India.
  3. Manoranjan Mishra: Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.
  4. M Hatami: Department of Mechanical Engineering, Esfarayen University of Technology, Esfarayen, Iran. m-hatami@um.ac.ir.
  5. Bengt Sunden: Lund University, 22100, Lund, Sweden.

Abstract

The exclusive behaviour of nanofluid has been actively emphasized due to the determination of improved thermal efficiency. Hence, the aim of this study is to highlight the laminar boundary layer axisymmetric stagnation point flow of Casson nanofluid past a stretching plate/cylinder under the influence of thermal radiation and suction/injection. Nanofluid comprises water and FeO as nanoparticles. In this article, a novel casson nanofluid model has been developed and studied on stretchable flat plate or circular cylinder. Adequate rational assumptions (velocity components) are employed for the transformation of the governing partial-differential equations into a group of non-dimensional ordinary-differential formulas, which are then solved analytically. The momentum and energy equations are solved through the complementary error function method and scaling quantities. Using various figures, the effects of essential factors on the nanofluid flow, heat transportation, and Nusselt number, are determined and explored. From obtained results, it is observed that the velocity field diminishes owing to magnification in stretching parameter [Formula: see text] and Casson fluid parameter [Formula: see text]. The temperature field increases by amplifying radiation [Formula: see text], and solid volume fraction parameter [Formula: see text]. The research is applicable to developing procedures for electric-conductive nanomaterials, which have potential applications in aircraft, smart coating transport phenomena, industry, engineering, and other sectors.

References

  1. Hiemenz, K. Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten graden Kreiszylinder. Dinglers Polytechn. J. 326, 321–324 (1911).
  2. Homann, F. Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel. Zeitschr. Angew. Math. Mech. 16, 153–164 (1936). [DOI: 10.1002/zamm.19360160304]
  3. Eckert, E. R. G. Die berechnung des warmeubergangs in der laminaren grenzschicht umstromter Korper. VDI Forschungsh. 416, 1–24 (1942).
  4. Norzawary, N. H. A., Bachok, N. & Ali, F. M. Stagnation point flow over a stretching/shrinking sheet in s carbon nanotubes with suction/injection effects. CFD Lett. 12(2020), 106–114 (2020).
  5. Shah, G., Rehman, A. & Sheikh, N. Heat transfer analysis over the boundary layer stagnation-point flow of couple stress fluid over an exponentially stretching sheet. Am. J. Appl. Math. 10, 100–105 (2022). [DOI: 10.11648/j.ajam.20221003.13]
  6. Soid, S. K., Kechil, S. A. & Ishak, A. Axisymmetric stagnation-point flow over a stretching/shrinking plate with second-order velocity slip. Propul. Power Res. 5, 194–201 (2016). [DOI: 10.1016/j.jppr.2016.07.007]
  7. Merkin, J. H., Najib, N., Bachok, N., Ishak, A. & Pop, I. Stagnation point flow and heat transfer over an exponentially stretching/shrinking cylinder. J. Taiwan Inst. Chem. Eng. 74, 65–72 (2017). [DOI: 10.1016/j.jtice.2017.02.008]
  8. Turkyilmazoglu, M. Stagnation point flow and heat transfer over stretchable plates and cylinders with an oncoming flow: Exact solutions. Chem. Eng. Sci. 238, 116596 (2021). [DOI: 10.1016/j.ces.2021.116596]
  9. Sakiadis, B. C. Boundary layer behaviour on continuous solid surfaces: I. Boundary layer equations for two dimensional and axisymmetric flow. AIChE J. 7(1961), 26–28 (1961). [DOI: 10.1002/aic.690070108]
  10. Sakiadis, B. C. Boundary layer behaviour on continuous solid surfaces: II. Boundary layer behaviour on continuous flat surfaces. AIChE J. 7(1961), 221–225 (1961). [DOI: 10.1002/aic.690070211]
  11. Crane, L. J. Flow past a stretching plate. Zeitschr. Angew. Math. Phys. 1970, 21 (1970).
  12. Mahanta, G., Shaw, S., Nayak, M. K. & Patil, J. C. Effects of MHD Casson stagnation point flow with stability analysis over the stretching surface in the presence of slip velocity. Int. J. Appl. Eng. Res. 16, 823–829 (2021).
  13. Mahabaleshwar, U. S., Maranna, T., Perez, L. M. & Ravichandra-Nayakar, S. N. An effect of magnetohydrodynamic and radiation on axisymmetric flow of non-Newtonian fluid past a porous shrinking /stretching surface. J. Magn. Magn. Mater. 571(2023), 170538 (2023). [DOI: 10.1016/j.jmmm.2023.170538]
  14. Ur Rehman, K., Shatanawi, W. & Yaseen, S. A comparative numerical study of heat and mass transfer individualities in Casson stagnation point fluid flow past a flat and cylindrical surfaces. Mathematics 11(2023), 470 (2023). [DOI: 10.3390/math11020470]
  15. Devdas, E. Numerical dual solution of stagnation point flow and melting heat transfer of casson fluid due to stretching sheet. J. Emerg. Technol. Innov. Res. 9, e434–e454 (2022).
  16. Choi, S. U. S. & Eastman, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Congress Exhibit. 66, 99–105 (1995).
  17. Yang, D., Yasir, M. & Hamid, A. Thermal transport analysis in stagnation point flow of Casson nanofluid over a shrinking surface with viscous dissipation. Waves Random Complex Media 2021, 1–15 (2021).
  18. Mahabaleshwar, U. S., Anusha, T. & Hatami, M. Analysis of stagnation point flow with hybrid nanoparticles over a porous medium. Fluid Dyn. Mater. Process. 2022, 1–27 (2022).
  19. Anusha, T., Huang, H. N. & Mahabaleshwar, U. S. Two dimensional unsteady stagnation point flow of Casson hybrid nanofluid over a permeable flat surface and heat transfer analysis with radiation. J. Taiwan Inst. Chem. Eng. 127, 79–91 (2021). [DOI: 10.1016/j.jtice.2021.08.014]
  20. Poornima, T., Sreenivasulu, P. & Souayeh, B. Mathematical study of heat transfer in a stagnation flow of a hybrid nanofluid over a stretching/shrinking cylinder. J. Eng. Phys. Thermophys. 95, 1443–1454 (2022). [DOI: 10.1007/s10891-022-02613-9]
  21. Nadeem, S., Ishtiaq, B., Akkurt, N. & Ghazwani, H. A. Entropy optimized flow of hybrid nanofluid with partial slip boundary effects and induced magnetic field. Int. J. Modern Phys. B 37, 2350252 (2023). [DOI: 10.1142/S0217979223502521]
  22. Maranna, T., Sachhin, S. M., Mahabaleshwar, U. S. & Hatami, M. Impact of Navier’s slip and MHD on laminar boundary layer flow with heat transfer for non-Newtonian nanofluid over a porous media. Sci. Rep. 13, 12634 (2023). [PMID: 37537229]
  23. Nadeem, S. et al. Reynolds nanofluid model for casson fluid flow conveying exponential nanoparticles through a slandering sheet. Sci. Rep. 13, 1953 (2023). [PMID: 36732568]
  24. Ishtiaq, B. & Nadeem, S. Theoretical analysis of casson nanofluid over a vertical exponentially shrinking sheet with inclined magnetic field. Waves Random Complex Media https://doi.org/10.1080/17455030.2022.2103206 (2022). [DOI: 10.1080/17455030.2022.2103206]
  25. Nadeem, S., Tumreen, M., Ishtiaq, B. & Abbas, N. Three-dimensional second-grade nanofluid flow with MHD effects through a slandering stretching sheet: A numerical solution. Waves Random Complex Media https://doi.org/10.1080/17455030.2022.2143928 (2022). [DOI: 10.1080/17455030.2022.2143928]
  26. Vishalakshi, A. B., Mahabaleshwar, U. S. & Lorenzini, G. An unsteady Hiemenz stagnation point flow of MHD Casson nanofluid due to a superlinear stretching/shrinking sheet with heat transfer. J. Adv. Res. Fluid Mech. Therm. Sci. 95, 1–19 (2022).
  27. Nayak, M. K., Mahanta, G., Karmakar, K., Mohanty, P. & Shaw, S. Effects of thermal radiation and stability analysis on MHD stagnation casson fluid flow over the stretching surface with velocity. AIP Conf. Proc. 2435, 020045 (2022). [DOI: 10.1063/5.0084385]
  28. Mahabaleshwar, U. S., Maranna, T. & Sofos, F. Analytical investigation of an incompressible viscous laminar Casson fluid flow past a stretching/shrinking sheet. Sci. Rep. 12, 18404 (2022). [PMID: 36319735]
  29. Kumar, G. V., Kumar, R. V. M. S. S. K. & Varma, S. V. K. Unsteady magnetohydrodynamic stagnation point flow of a Nanofluid over a slandering stretching sheet using Buongiorno’s model. Int. J. Res. Ind. Eng. 7(2018), 84–105 (2018).
  30. Daniel, Y. S., Usman, A. & Haruna, U. Stagnation point flow with thermal and magnetic field over a stretching sheet. Sci. World J. 17, 196–199 (2022).
  31. Kaneez, H. et al. Thermal analysis of magnetohydrodynamic(MHD) Casson fluid with suspended iron (II, III) oxide-aluminum oxide-titanium dioxide ternary-hybrid nanostructures. J. Magn. Magn. Mater. 586, 171223 (2023). [DOI: 10.1016/j.jmmm.2023.171223]
  32. Wang, F. et al. Computational examination of non-Darcian flow of radiative ternary hybridity casson nanoliquid through moving rotary cone. J. Comput. Design Eng. 10(2023), 1657–1676 (2023).
  33. Maranna, T., Mahabaleshwar, U. S., Perez, L. M. & Manca, O. Flow of viscoelastic ternary nanofluid over a shrinking porous medium with heat source/sink and radiation. Therm. Sci. Eng. Progress. 40, 101791 (2023). [DOI: 10.1016/j.tsep.2023.101791]
  34. Ishtiaq, B., Nadeem, S. & Abbas, N. Theoretical study of two-dimensional unsteady maxwell fluid flow over a vertical riga plate under radiation effects. Sci. Iran. 29, 3072–3083 (2022).
  35. Kumar, T. P. et al. Transient conditions effects on electromagnetic casson fluid flow via stretching surface: System thermal case elaboration. Numer. Heat Transfer Part B: Fundam. 84, 539–555 (2023). [DOI: 10.1080/10407790.2023.2215406]
  36. Shankar, G. et al. Radiative and viscid dissipative flowing influences on heat and mass transfer in MHD casson fluid employing Galerkin finite element style. Int. J. Modern Phys. B 2023, 2450022 (2023).
  37. Sajid, T. et al. Radiative and porosity effects of trihybrid casson nanofluids with Bodewadt flow and inconstant heat source by Yamada-Ota and Xue models. Alexandr. Eng. J. 66, 457–473 (2023). [DOI: 10.1016/j.aej.2022.11.009]
  38. Chaudhary, S. & Kanika, K. M. Heat generation/absorption and radiation effects on hydromagnetic stagnation point flow of nanofluids towards a heated porous stretching/shrinking sheet with suction/injection. J. Porous Media 23, 27–49 (2020). [DOI: 10.1615/JPorMedia.2019026922]
  39. Mahabaleshwar, U. S., Maranna, T., Perez, L. M., Bognar, G. V. & Oztop, H. F. An impact of radiation on laminar flow of ternary nanofluid over porous stretching/shrinking sheet with mass transpiration. Results Eng. 18, 101227 (2023). [DOI: 10.1016/j.rineng.2023.101227]
  40. Suresh, P., Krishna, Y. H., Naik, S. H. S. & Reddy, P. V. J. Heat and Mass Transfer in MHD Casson fluid flow along exponentially permeable stretching sheet in presence of radiation and chemical reaction. Ann. Roman. Soc. Cell Biol. 25, 7163–7175 (2021).
  41. Vishalakshi, A. B., Mahabaleshwar, U. S. & Hatami, M. MHD Casson carbon nanotube flow with mass and heat transfer under thermosolutal Marangoni convection in s porous medium: Analytical solution. Sci. Rep. 12, 16071 (2022). [PMID: 36167793]
  42. Mustafa, M., Hayat, T. & Pop, I. Stagnation point flow and heat transfer of a Casson fluid towards a stretching sheet. Zeitschr. Naturforsch. 67, 70–76 (2014). [DOI: 10.5560/zna.2011-0057]
  43. Vishalakshi, A. B., Maranna, T., Mahabaleshwar, U. S. & Laroze, D. An effect of MHD on non-Newtonian fluid flow over a porous stretching/shrinking sheet with heat transfer. Appl. Sci. 12, 4937 (2022). [DOI: 10.3390/app12104937]
  44. Maranna, T., Mahabaleshwar, U. S., Nayakar, S. N. R., Sarris, I. E. & Souayeh, B. An influence of radiation and magnetohydrodynamic flow of hybrid nanofluid past a stretching/shrinking sheet with mass transpiration. ZAMM-J. Math. Mech. 2023, e202300140 (2023). [DOI: 10.1002/zamm.202300140]
  45. Vishala, H. V., Maranna, T., Mahabaleshwar, U. S. & Souayeh, B. The impact of radiation and Marangoni boundary condition on flow through a porous medium with Brinkmann model. Math. Model. Fluid Dyn. Nanofluids 2023, 138–152 (2023). [DOI: 10.1201/9781003299608-9]
  46. Humane, P. P., Patil, V. S. & Patil, A. B. Chemical reaction and thermal radiation effects on magnetohydrodynamics flow of Casson-Williamson nanofluid over a porous stretching surface. Proc. Inst. Mech. Eng. Part E: J Process Mech. Eng. 235, 2008–2018 (2021). [DOI: 10.1177/09544089211025376]
  47. Aly, E. H. Dual exact solution of graphene–water nanofluid flow over a stretching/shrinking sheet with suction/injection and heat source/sink: Critical values and regions with stability. Powd. Technol. 342, 528–544 (2019). [DOI: 10.1016/j.powtec.2018.09.093]
  48. Mehta, R., Chauhan, V. S. & Mehta, T. MHD flow of nanofluids in the presence of porous media, radiation and heat generation through a verticle channel. NCRAPS J. Phys. 1504, 012008 (2020).
  49. Turkyilmazoglu, M. Nanofluids flow and heat transfer due to rotating disk. Comput. Fluids 94, 139–146 (2014). [DOI: 10.1016/j.compfluid.2014.02.009]
  50. Elsaid, E. M. & Wahed, M. A. A. MHD mixed convection ferro FeO/Cu-hybrid nanofluid runs in a vertical channel. Chin. J. Phys. 76, 269–282 (2022). [DOI: 10.1016/j.cjph.2021.12.016]
  51. Ashraf, A., Zhang, Z., Saeed, T., Zeb, H. & Munir, T. Convective heat transfer analysis for aluminium oxide (AlO) and Ferro (FeO) based nano fluid over a curved stretching sheet. Nanomaterials 12, 1152 (2022). [PMID: 35407270]
  52. Parvin, S., Nasrin, R. & Alim, M. A. Effect of solid volume fraction on forced convective flow of nanofluid through direct absorption solar collector. Appl. Appl. Math. Int. J. 2, 9–21 (2016).
  53. Dinarvand, S., Hosseini, R. & Pop, I. Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powd. Technol. 311, 147–156 (2017). [DOI: 10.1016/j.powtec.2016.12.058]
  54. Reddy, M. G., Kumari, P. V. & Padma, P. Effect of thermal radiation on MHD casson nanofluid over a cylinder. J. Nanofluids 7, 428–438 (2018). [DOI: 10.1166/jon.2018.1467]

Word Cloud

Created with Highcharts 10.0.0nanofluid[Formula:seetext]flowCassonstretchingparameterthermalstagnationpointpastplate/cylinderradiationvelocityequationssolvedfieldexclusivebehaviouractivelyemphasizedduedeterminationimprovedefficiencyHenceaimstudyhighlightlaminarboundarylayeraxisymmetricinfluencesuction/injectionNanofluidcompriseswaterFeOnanoparticlesarticlenovelcassonmodeldevelopedstudiedstretchableflatplatecircularcylinderAdequaterationalassumptionscomponentsemployedtransformationgoverningpartial-differentialgroupnon-dimensionalordinary-differentialformulasanalyticallymomentumenergycomplementaryerrorfunctionmethodscalingquantitiesUsingvariousfigureseffectsessentialfactorsthe nanofluidheattransportationNusseltnumberdeterminedexploredobtainedresultsobserveddiminishesowingmagnificationfluidtemperatureincreasesamplifyingsolidvolumefractionresearchapplicabledevelopingprocedureselectric-conductivenanomaterialspotentialapplicationsaircraftsmartcoatingtransportphenomenaindustryengineeringsectorsRadiationeffect

Similar Articles

Cited By