Cardiac dimensions and hemodynamics in healthy juvenile Landrace swine.

Michelle Costa Galbas, Hendrik Cornelius Straky, Florian Meissner, Johanna Reuter, Marius Schimmel, Sebastian Grundmann, Martin Czerny, Wolfgang Bothe
Author Information
  1. Michelle Costa Galbas: Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
  2. Hendrik Cornelius Straky: Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
  3. Florian Meissner: Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
  4. Johanna Reuter: Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
  5. Marius Schimmel: Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
  6. Sebastian Grundmann: Department of Cardiology and Angiology, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
  7. Martin Czerny: Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
  8. Wolfgang Bothe: Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany. wolfgang.bothe@uniklinik-freiburg.de.

Abstract

BACKGROUND: Swine are frequently used as animal model for cardiovascular research, especially in terms of representativity of human anatomy and physiology. Reference values for the most common species used in research are important for planning and execution of animal testing. Transesophageal echocardiography is the gold standard for intraoperative imaging, but can be technically challenging in swine. Its predecessor, epicardial echocardiography (EE), is a simple and fast intraoperative imaging technique, which allows comprehensive and goal-directed assessment. However, there are few echocardiographic studies describing echocardiographic parameters in juvenile swine, none of them using EE. Therefore, in this study, we provide a comprehensive dataset on multiple geometric and functional echocardiographic parameters, as well as basic hemodynamic parameters in swine using EE.
METHODS: The data collection was performed during animal testing in ten female swine (German Landrace, 104.4 ± 13.0 kg) before left ventricular assist device implantation. Hemodynamic data was recorded continuously, before and during EE. The herein described echocardiographic measurements were acquired according to a standardized protocol, encompassing apical, left ventricular short axis and long axis as well as epiaortic windows. In total, 50 echocardiographic parameters and 10 hemodynamic parameters were assessed.
RESULTS: Epicardial echocardiography was successfully performed in all animals, with a median screening time of 14 min (interquartile range 11-18 min). Referring to left ventricular function, ejection fraction was 51.6 ± 5.9% and 51.2 ± 6.2% using the Teichholz and Simpson methods, respectively. Calculated ventricular mass was 301.1 ± 64.0 g, as the left ventricular end-systolic and end-diastolic diameters were 35.3 ± 2.5 mm and 48.2 ± 3.5 mm, respectively. The mean heart rate was 103 ± 28 bpm, mean arterial pressure was 101 ± 20 mmHg and mean flow at the common carotid artery was 627 ± 203 mL/min.
CONCLUSION: Epicardial echocardiography allows comprehensive assessment of most common echocardiographic parameters. Compared to humans, there are important differences in swine with respect to ventricular mass, size and wall thickness, especially in the right heart. Most hemodynamic parameters were comparable between swine and humans. This data supports study planning, animal and device selection, reinforcing the three R principles in animal research.

Keywords

References

  1. J Am Soc Echocardiogr. 2010 Nov;23(11):1115-27; quiz 1220-1 [PMID: 20864313]
  2. J Thorac Cardiovasc Surg. 2012 Feb;143(2):361-7 [PMID: 21752399]
  3. Adv Clin Exp Med. 2016 Nov-Dec;25(6):1249-1254 [PMID: 28028980]
  4. Front Cardiovasc Med. 2019 Aug 14;6:117 [PMID: 31475161]
  5. Echo Res Pract. 2014 Dec 1;1(2):43-50 [PMID: 26693300]
  6. Nat Rev Cardiol. 2019 Aug;16(8):457-475 [PMID: 30894679]
  7. J Thorac Cardiovasc Surg. 1972 Dec;64(6):922-34 [PMID: 4636009]
  8. J Am Soc Echocardiogr. 2010 Jul;23(7):685-713; quiz 786-8 [PMID: 20620859]
  9. J Vasc Surg. 1986 Jun;3(6):846-53 [PMID: 2940377]
  10. Eur Heart J Cardiovasc Imaging. 2023 Mar 21;24(4):415-423 [PMID: 36331816]
  11. J Cardiothorac Vasc Anesth. 2021 Feb;35(2):684-686 [PMID: 32654805]
  12. Interact Cardiovasc Thorac Surg. 2016 May;22(5):580-6 [PMID: 26831678]
  13. World J Pediatr Congenit Heart Surg. 2019 May;10(3):343-350 [PMID: 31084307]
  14. BMC Vet Res. 2019 Jan 28;15(1):43 [PMID: 30691453]
  15. Eur Heart J Cardiovasc Imaging. 2014 Jun;15(6):680-90 [PMID: 24451180]
  16. Radiat Med. 2000 Jul-Aug;18(4):239-44 [PMID: 11246999]
  17. J Vasc Bras. 2021 May 14;20:e20200086 [PMID: 34093675]
  18. Heart Asia. 2012 Dec 12;4(1):171-5 [PMID: 27326061]
  19. Front Cardiovasc Med. 2019 Sep 10;6:135 [PMID: 31552276]
  20. J Am Soc Echocardiogr. 2016 Apr;29(4):277-314 [PMID: 27037982]
  21. J Anat. 1998 Jul;193 ( Pt 1):105-19 [PMID: 9758141]
  22. Eur Respir J. 2009 Oct;34(4):888-94 [PMID: 19324955]
  23. Orphanet J Rare Dis. 2014 Dec 10;9:203 [PMID: 25491897]
  24. Echocardiography. 2018 Jul;35(7):999-1004 [PMID: 29577408]
  25. J Am Soc Echocardiogr. 1990 Sep-Oct;3(5):392-401 [PMID: 2245032]
  26. Ultrasound Med Biol. 2017 May;43(5):974-980 [PMID: 28214035]
  27. Ann Card Anaesth. 2016 Oct;19(Supplement):S26-S34 [PMID: 27762246]
  28. Circ Cardiovasc Imaging. 2008 Sep;1(2):104-13 [PMID: 19808527]
  29. Eur J Echocardiogr. 2010 Sep;11(8):645-58 [PMID: 20823280]
  30. J Am Soc Echocardiogr. 2015 Jan;28(1):1-39.e14 [PMID: 25559473]
  31. Am J Cardiol. 1982 Apr 1;49(5):1191-6 [PMID: 7064844]
  32. Front Cardiovasc Med. 2021 Jul 12;8:600356 [PMID: 34322521]

Grants

  1. 03VP08500/Bundesministerium für Bildung und Forschung
  2. 03VP08500/Bundesministerium für Bildung und Forschung

MeSH Term

Humans
Female
Animals
Swine
Ventricular Function, Left
Echocardiography
Hemodynamics
Heart Ventricles

Word Cloud

Created with Highcharts 10.0.0swineparametersanimalechocardiographicventricularechocardiographyEEleftresearchcommoncomprehensiveusinghemodynamicdataEpicardialmeanSwineusedespeciallyimportantplanningtestingintraoperativeimagingallowsassessmentjuvenilestudywellperformedLandracedeviceaxis51respectivelymass5 mmhearthumansBACKGROUND:frequentlymodelcardiovasculartermsrepresentativityhumananatomyphysiologyReferencevaluesspeciesexecutionTransesophagealgoldstandardcantechnicallychallengingpredecessorepicardialsimplefasttechniquegoal-directedHoweverstudiesdescribingnoneThereforeprovidedatasetmultiplegeometricfunctionalbasicMETHODS:collectiontenfemaleGerman1044 ± 130 kgassistimplantationHemodynamicrecordedcontinuouslyhereindescribedmeasurementsacquiredaccordingstandardizedprotocolencompassingapicalshortlongepiaorticwindowstotal5010assessedRESULTS:successfullyanimalsmedianscreeningtime14 mininterquartilerange11-18 minReferringfunctionejectionfraction6 ± 59%2 ± 62%TeichholzSimpsonmethodsCalculated3011 ± 640 gend-systolicend-diastolicdiameters353 ± 2482 ± 3rate103 ± 28 bpmarterialpressure101 ± 20 mmHgflowcarotidartery627 ± 203 mL/minCONCLUSION:CompareddifferencesrespectsizewallthicknessrightcomparablesupportsselectionreinforcingthreeRprinciplesCardiacdimensionshemodynamicshealthyExperimentalmodelsHemodynamics

Similar Articles

Cited By