Dexpanthenol exhibits antiapoptotic and anti-inflammatory effects against nicotine-induced liver damage by modulating Bax/Bcl-xL, Caspase-3/9, and Akt/NF-κB pathways.

Nuray Üremiş, Meral Aslan, Elif Taşlidere, Elif Gürel
Author Information
  1. Nuray Üremiş: Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey. ORCID
  2. Meral Aslan: Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
  3. Elif Taşlidere: Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey.
  4. Elif Gürel: Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.

Abstract

Chronic tobacco use can lead to liver damage and inflammation due to the accumulation of various toxins in the body. This study aimed to investigate the correlation between the molecular mechanisms of nicotine-induced liver injury, the caspase cascade, and the Akt/NF-κB signaling pathway, as well as the protective effects of dexpanthenol (DEX). Male rats were subjected to intraperitoneal injections of nicotine at a concentration of 0.5 mg/kg/day and/or DEX at a concentration of 500 mg/kg/day for 8 weeks. After the treatment period, liver function tests were conducted on serum samples, and tissue samples were analyzed for protein levels of Akt, NF-κB, Bax, Bcl-xL, Caspase-3, and Caspase-9, along with histopathological changes. Additionally, assessments of oxidative stress markers and proinflammatory cytokines were carried out. Nicotine administration led to elevated levels of IL-6, IL-1β, MDA, TOS, and oxidative stress index, accompanied by decreased TAS levels. Moreover, nicotine exposure reduced the p-Akt/Akt ratio, increased NF-κB, Bax, Caspase-3, and Caspase-9 protein levels, and decreased the antiapoptotic protein Bcl-xL levels. DEX treatment significantly mitigated these effects, restoring the parameters to levels comparable to those of the control group. Nicotine-induced liver injury resulted in oxidative stress, inflammation, and apoptosis, mediated by Bax/Bcl-xL, Caspase-3, Caspase-9, and Akt/NF-κB pathways. Conversely, DEX effectively attenuated nicotine-induced liver injury by modulating apoptosis through NF-κB, Caspase-3, Caspase-9, Bax inhibition, and Bcl-xL activation.

Keywords

References

  1. T. K. Burki, Lancet. Oncol. 2021, 22(9), 1217.
  2. M. Premkumar, A. C. Anand, J. Clin. Exp. Hepatol. 2021, 11(6), 700.
  3. R. Sobkowiak, A. Lesicki, Postepy Biochem. 2013, 59(1), 33.
  4. H. Yamanaka, M. Nakajima, K. Nishimura, R. Yoshida, T. Fukami, M. Katoh, T. Yokoi, Eur. J. Pharm. Sci. 2004, 22(5), 419.
  5. A. C. Holloway, Encycl. Toxicol. (Third Edition) 2014, 514.
  6. M. Delijewski, A. Bartoń, P. Delijewska, R. Balwierz, G. Jakubiak, L. Kośmider, N. Pawlas, Acta Biochim. Pol. 2019, 66(4), 375.
  7. M. Kim, C. H. Han, M. Y. Lee, Toxicol. Res. 2014, 30(3), 149.
  8. S. A. Grando, Nat. Rev. Cancer 2014, 14(6), 419.
  9. D. Malińska, M. R. Więckowski, B. Michalska, K. Drabik, M. Prill, P. Patalas-Krawczyk, J. Walczak, J. Szymański, C. Mathis, M. Van der Toorn, K. Luettich, J. Hoeng, M. C. Peitsch, J. Duszyński, J. Szczepanowska, J. Bioenerg. Biomembr. 2019, 51(4), 259.
  10. C. Schaal, S. P. Chellappan, Mol. Cancer Res. 2014, 12(1), 14.
  11. D. Marti-Aguado, A. Clemente-Sanchez, R. Bataller, J. Hepatol. 2022, 77(1), 191.
  12. A. Catassi, D. Servent, L. Paleari, A. Cesario, P. Russo, Mutat. Res. 2008, 659(3), 221.
  13. K. A. West, J. Brognard, A. S. Clark, I. R. Linnoila, X. Yang, S. M. Swain, C. Harris, S. Belinsky, P. A. Dennis, J. Clin. Invest. 2003, 111(1), 81.
  14. M. Mehdi Üremiş, N. Üremiş, E. Tosun, M. Durhan, Y. Çiğremiş, A. Baysar, Y. Türköz, Curr. Cancer Drug. Targets 2022, 22(11), 931.
  15. Y. Zhang, X. Mao, W. Chen, X. Guo, L. Yu, F. Jiang, X. Wang, W. Li, Q. Guo, T. Li, N. Lin, Mol. Ther. Nucleic Acids 2020, 19, 890.
  16. X. Liu, X. Xiao, X. Han, L. Yao, W. Lan, Molecules 2022, 27(22), 7963.
  17. E. Nooshinfar, D. Bashash, M. Abbasalizadeh, A. Safaroghli-Azar, P. Sadreazami, M. Akbari, Iran. J. Cancer Prev. 2017, 10(1), e7902.
  18. P. Vitaglione, F. Morisco, N. Caporaso, V. Fogliano, Crit. Rev. Food Sci. Nutr. 2005, 44(7-8), 575.
  19. X. Zhao, S. Zhang, H. Shao, Bioengineered 2022, 13(5), 11625.
  20. F. Pietrocola, L. Galluzzi, J. M. Bravo-San pedro, F. Madeo, G. Kroemer, Cell Metab. 2015, 21(6), 805.
  21. A. Czumaj, S. Szrok-Jurga, A. Hebanowska, J. Turyn, J. Swierczynski, T. Sledzinski, E. Stelmanska, Int. J. Mol. Sci. 2020, 21(23), 9057.
  22. F. Ebner, A. Heller, F. Rippke, I. Tausch, Am. J. Clin. Dermatol. 2002, 3(6), 427.
  23. Y. Bilgic, S. Akbulut, Z. Aksungur, M. Erdemli, O. Ozhan, H. Parlakpinar, N. Vardi, Y. Turkoz, Exp. Ther. Med. 2018, 16(5), 4049.
  24. K. Gulle, N. G. Ceri, M. Akpolat, M. Arasli, B. Demirci, Histol. Histopathol. 2014, 29(10), 1305.
  25. M. M. Uremis, E. Gurel, M. Aslan, E. Taslidere, Naunyn Schmiedebergs Arch. Pharmacol. 2023.
  26. M. Aslan, E. Gürel, N. Üremiş, M. M. Üremiş, E. Taşlıdere, Toxicol. Environ. Health Sci. 2023, 15(3), 303.
  27. O. Aydin, F. Pehlivanli, G. Karaca, G. Aydin, C. Altunkaya, H. Bulut, Turk. J. Gastroenterol. 2019, 30(9), 826.
  28. M. Y. Tepebaşı, H. I. Büyükbayram, Ö. Özmen, Ş. Taşan, E. Selçuk, Naunyn-Schmiedeberg's Arch. Pharmacol. 2023, 396(8), 1837.
  29. N. Uremis, M. M. Uremis, Y. Cigremis, E. Tosun, A. Baysar, Y. Turkoz, J. Food Biochem. 2022, 46(10), e14333.
  30. N. Uremis, M. M. Uremis, F. I. Tolun, M. Ceylan, A. Doganer, A. H. Kurt, Anticancer Res. 2017, 37(11), 6381.
  31. E. Altinoz, Z. Oner, H. Elbe, N. Uremis, M. Uremis, Drug Chem. Toxicol. 2022, 45(5), 2024.
  32. H. Ohkawa, N. Ohishi, K. Yagi, Anal. Biochem. 1979, 95(2), 351.
  33. M. M. Uremis, S. Gultekin, N. Uremis, T. Safak, Y. Cigremis, M. Gul et al., Naunyn Schmiedebergs Arch. Pharmacol. 2023.
  34. K. Gürünlüoğlu, M. Gül, A. Koçbıyık, A. Koç, N. Üremiş, S. Gürünlüoğlu, H. G. Bağ, Y. Karaca, A. Taşçi, S. Gül, M. M. Üremiş, K. Durmuş, M. Demircan, J. Pediatr. Surg. 2020, 55(3), 465.
  35. A. Yildiz, O. Ozhan, A. Ulu, T. Dogan, B. Bakar, Y. Ugur, E. Taslidere, I. Gokbulut, S. Polat, H. Parlakpinar, B. Ates, N. Vardi, Environ. Sci. Pollut. Res. 2023, 30(29), 74301.
  36. M. B. Reitsma, N. Fullman, M. Ng, J. S. Salama, A. Abajobir, K. H. Abate, C. Abbafati, S. F. Abera, B. Abraham, G. Y. Abyu, A. O. Adebiyi, Z. Al-Aly, A. V. Aleman, R. Ali, A. Al Alkerwi, P. Allebeck, R. M. Al-Raddadi, A. T. Amare, A. Amberbir, W. Ammar, S. M. Amrock, C. A. T. Antonio, H. Asayesh, N. T. Atnafu, P. Azzopardi, A. Banerjee, A. Barac, T. Barrientos-Gutierrez, A. C. Basto-Abreu, S. Bazargan-Hejazi, N. Bedi, B. Bell, A. K. Bello, I. M. Bensenor, A. S. Beyene, N. Bhala, S. Biryukov, K. Bolt, H. Brenner, Z. Butt, F. Cavalleri, K. Cercy, H. Chen, D. J. Christopher, L. G. Ciobanu, V. Colistro, M. Colomar, L. Cornaby, X. Dai, S. A. Damtew, L. Dandona, R. Dandona, E. Dansereau, K. Davletov, A. Dayama, T. T. Degfie, A. Deribew, S. D. Dharmaratne, B. D. Dimtsu, K. E. Doyle, A. Y. Endries, S. P. Ermakov, K. Estep, E. J. A. Faraon, F. Farzadfar, V. L. Feigin, A. B. Feigl, F. Fischer, J. Friedman, T. T. Ghiwot, S. L. Gall, W. Gao, R. F. Gillum, A. L. Gold, S. V. Gopalani, C. C. Gotay, R. Gupta, R. Gupta, V. Gupta, R. R. Hamadeh, G. Hankey, H. L. Harb, S. I. Hay, M. Horino, N. Horita, H. D. Hosgood, A. Husseini, B. V. Ileanu, F. Islami, G. Jiang, Y. Jiang, J. B. Jonas, Z. Kabir, R. Kamal, A. Kasaeian, C. N. Kesavachandran, Y. S. Khader, I. Khalil, Y. H. Khang, S. Khera, J. Khubchandani, D. Kim, Y. J. Kim, R. W. Kimokoti, Y. Kinfu, L. D. Knibbs, Y. Kokubo, D. Kolte, J. Kopec, S. Kosen, G. A. Kotsakis, P. A. Koul, A. Koyanagi, K. J. Krohn, H. Krueger, B. K. Defo, B. K. Bicer, C. Kulkarni, G. A. Kumar, J. L. Leasher, A. Lee, M. Leinsalu, T. Li, S. Linn, P. Liu, S. Liu, L. T. Lo, A. D. Lopez, S. Ma, H. M. A. El Razek, A. Majeed, R. Malekzadeh, D. C. Malta, W. A. Manamo, J. Martinez-Raga, A. B. Mekonnen, W. Mendoza, T. R. Miller, K. A. Mohammad, L. Morawska, K. I. Musa, G. Nagel, S. P. Neupane, Q. Nguyen, G. Nguyen, I. H. Oh, A. S. Oyekale, M. PA, A. Pana, E. K. Park, Lancet 2017, 389(10082), 1885.
  37. Y. Guo, S. Li, Z. Wang, F. Jiang, Y. Guan, M. Huang, G. Zhong, Nicotine. Tob. Res. 2022, 24(12), 1881.
  38. J. Altamirano, R. Bataller, Gut 2010, 59(9), 1159.
  39. D. V. Demina, L. B. Toporkova, V. A. Kozlov, S. K. Khaldoyanidi, I. A. Orlovskaya, Bull. Exp. Biol. Med. 2005, 139(6), 692.
  40. V. Hernandez-Gea, S. Toffanin, S. L. Friedman, J. M. Llovet, Gastroenterology 2013, 144(3), 512.
  41. A. R. Caliskan, M. Gul, I. Yılmaz, B. Otlu, N. Uremis, M. M. Uremis, I. Kilicaslan, S. Gul, D. Tikici, O. Saglam, M. Yalcin, U. Demirel, M. Harputluoglu, Hum. Exp. Toxicol. 2021, 40(12_suppl), S693.
  42. G. D'Amico, G. Garcia-Tsao, L. Pagliaro, J. Hepatol. 2006, 44(1), 217.
  43. V. Spinnenhirn, J. Demgenski, T. Brunner, Front. Cell. Dev. Biol. 2019, 7, 72.
  44. L. Faletti, L. Peintner, S. Neumann, S. Sandler, T. Grabinger, S. Mac Nelly, I. Merfort, C. H. Huang, D. Tschaharganeh, T. W. Kang, F. Heinzmann, L. D'Artista, U. Maurer, T. Brunner, S. Lowe, L. Zender, C. Borner, Cell Death Dis. 2018, 9(9), 909.
  45. C. H. Wilson, S. Kumar, Cell Death Differ. 2018, 25(6), 1010.
  46. H. Mumtaz, M. Hameed, A. B. Sangah, A. Zubair, M. Hasan, Front. Public Health 2022, 10, 1008878.
  47. R. Ivey, M. Desai, K. Green, I. Sinha-Hikim, T. Friedman, A. Sinha-Hikim, Horm. Metab. Res. 2014, 46(8), 568.
  48. T. C. Friedman, I. Sinha-Hikim, M. Parveen, S. M. Najjar, Y. Liu, M. Mangubat, C. S. Shin, A. Lyzlov, R. Ivey, M. Shaheen, S. W. French, A. P. Sinha-Hikim, Endocrinology 2012, 153(12), 5809.
  49. J. D. Lambeth, Nat. Rev. Immunol. 2004, 4(3), 181.
  50. Y. Zhang, Y. Du, W. Le, K. Wang, N. Kieffer, J. Zhang, Antioxid. Redox Signaling 2011, 15(11), 2867.
  51. W. Liu, Z. T. Jing, C. R. Xue, S. X. Wu, W. N. Chen, X. J. Lin, X. Lin, Toxicol. Appl. Pharmacol. 2019, 381, 114729.
  52. E. J. Sun, M. Wankell, P. Palamuthusingam, C. McFarlane, L. Hebbard, Biomedicines 2021, 9(11), 1639.
  53. J. Lian, Y. Zou, L. Huang, H. Cheng, K. Huang, J. Zeng, L. Chen, Oncol. Lett. 2020, 19(3), 2043.
  54. M. J. Morgan, Z. Liu, Cell Res. 2011, 21(1), 103.
  55. T. Liu, L. Zhang, D. Joo, S. C. Sun, Signal Transduct. Target Ther. 2017, 2, 17023.
  56. P. K. Avti, K. Vaiphei, C. M. Pathak, K. L. Khanduja, Chem. Res. Toxicol. 2010, 23(7), 1163.
  57. S. Khaled, M. N. Makled, M. A. Nader, Life Sci. 2020, 260, 118426.
  58. J. Zhao, S. Park, J. W. Kim, J. Qi, Z. Zhou, C. W. Lim, B. Kim, Int. Immunopharmacol. 2020, 78, 106071.
  59. M. R. Salahshoor, Z. G. Mahmoudian, S. Roshankhah, M. Farokhi, C. Jalili, Histol. Histopathol. 2019, 34(10), 1185.
  60. M. Salahshoor, S. Mohamadian, S. Kakabaraei, S. Roshankhah, C. Jalili, J. Tradit. Complement. Med. 2016, 6(2), 176.
  61. C. Jalili, H. Tabatabaei, S. Kakaberiei, S. Roshankhah, M. Salahshoor, Int. J. Prev. Med. 2015, 6, 92.
  62. S. Khaled, M. N. Makled, M. A. Nader, Environ. Sci. Pollut. Res. 2022, 29(4), 5812.
  63. N. A. El-Sherbeeny, M. A. Nader, G. M. Attia, H. Ateyya, Naunyn-Schmiedeberg's Arch. Pharmacol. 2016, 389(12), 1341.
  64. M. B. Newman, G. W. Arendash, R. D. Shytle, P. C. Bickford, T. Tighe, P. R. Sanberg, Life Sci. 2002, 71(24), 2807.

MeSH Term

Animals
Male
Rats
Anti-Inflammatory Agents
Apoptosis
bcl-2-Associated X Protein
Caspase 3
Caspase 9
Chemical and Drug Induced Liver Injury, Chronic
Inflammation
NF-kappa B
Nicotine
Oxidative Stress
Pantothenic Acid
Proto-Oncogene Proteins c-akt

Chemicals

Anti-Inflammatory Agents
bcl-2-Associated X Protein
Caspase 3
Caspase 9
dexpanthenol
NF-kappa B
Nicotine
Pantothenic Acid
Proto-Oncogene Proteins c-akt

Word Cloud

Created with Highcharts 10.0.0liverlevelsDEXCaspase-3Caspase-9oxidativestressinflammationnicotine-inducedinjuryAkt/NF-κBeffectsnicotineproteinNF-κBBaxBcl-xLapoptosisdamagecaspasedexpanthenolconcentrationtreatmentsamplesdecreasedantiapoptoticBax/Bcl-xLpathwaysmodulatingChronictobaccousecanleaddueaccumulationvarioustoxinsbodystudyaimedinvestigatecorrelationmolecularmechanismscascadesignalingpathwaywellprotectiveMaleratssubjectedintraperitonealinjections05 mg/kg/dayand/or500 mg/kg/day8weeksperiodfunctiontestsconductedserumtissueanalyzedAktalonghistopathologicalchangesAdditionallyassessmentsmarkersproinflammatorycytokinescarriedNicotineadministrationledelevatedIL-6IL-1βMDATOSindexaccompaniedTASMoreoverexposurereducedp-Akt/AktratioincreasedsignificantlymitigatedrestoringparameterscomparablecontrolgroupNicotine-inducedresultedmediatedConverselyeffectivelyattenuatedinhibitionactivationDexpanthenolexhibitsanti-inflammatoryCaspase-3/9Bcl-2family

Similar Articles

Cited By