Yersiniabactin is a quorum-sensing autoinducer and siderophore in uropathogenic .

James R Heffernan, John A Wildenthal, Hung Tran, George L Katumba, William H McCoy, Jeffrey P Henderson
Author Information
  1. James R Heffernan: Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA.
  2. John A Wildenthal: Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA.
  3. Hung Tran: Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA.
  4. George L Katumba: Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA.
  5. William H McCoy: Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri, USA.
  6. Jeffrey P Henderson: Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, USA. ORCID

Abstract

Siderophores are secreted ferric ion chelators used to obtain iron in nutrient-limited environmental niches, including human hosts. While all express the enterobactin (Ent) siderophore system, isolates from patients with urinary tract infections additionally express the genetically distinct yersiniabactin (Ybt) siderophore system. To determine whether the Ent and Ybt systems are functionally redundant for iron uptake, we compared the growth of different isogenic siderophore biosynthetic mutants in the presence of transferrin, a human iron-binding protein. We observed that Ybt expression does not compensate for deficient Ent expression following low-density inoculation. Using transcriptional and product analysis, we found this non-redundancy to be attributable to a density-dependent transcriptional stimulation cycle in which Ybt functions as an autoinducer. These results distinguish the Ybt system as a combined quorum-sensing and siderophore system. These functions may reflect Ybt as a public good within bacterial communities or as an adaptation to confined, subcellular compartments in infected hosts. This combined functionality may contribute to the extraintestinal pathogenic potential of and related .IMPORTANCEPatients with urinary tract infections are often infected with strains carrying adaptations that increase their pathogenic potential. One of these adaptations is the accumulation of multiple siderophore systems, which scavenge iron for nutritional use. While iron uptake is important for bacterial growth, the increased metabolic costs of siderophore production could diminish bacterial fitness during infections. In a siderophore-dependent growth condition, we show that the virulence-associated yersiniabactin siderophore system in uropathogenic is not redundant with the ubiquitous enterobactin system. This arises not from differences in iron-scavenging activity but because yersiniabactin is preferentially expressed during bacterial crowding, leaving bacteria dependent upon enterobactin for growth at low cell density. Notably, this regulatory mode arises because yersiniabactin stimulates its own expression, acting as an autoinducer in a previously unappreciated quorum-sensing system. This unexpected result connects quorum-sensing with pathogenic potential in and related .

Keywords

References

  1. Int J Med Microbiol. 2004 Sep;294(2-3):83-94 [PMID: 15493818]
  2. mBio. 2022 Jan 18;13(1):e0362121 [PMID: 35038896]
  3. Biosens Bioelectron. 2010 Oct 15;26(2):649-54 [PMID: 20667707]
  4. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2386-91 [PMID: 16467145]
  5. Am J Med. 2002 Jul 8;113 Suppl 1A:5S-13S [PMID: 12113866]
  6. Proc Natl Acad Sci U S A. 2006 Sep 19;103(38):14170-5 [PMID: 16968784]
  7. J Bacteriol. 2005 Dec;187(24):8350-60 [PMID: 16321939]
  8. J Bacteriol. 1994 Jul;176(13):3944-55 [PMID: 8021177]
  9. PLoS One. 2011 May 06;6(5):e19711 [PMID: 21573071]
  10. Nat Chem Biol. 2012 Aug;8(8):731-6 [PMID: 22772152]
  11. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):7046-50 [PMID: 9618536]
  12. Biochemistry. 1987 Aug 25;26(17):5471-7 [PMID: 2823881]
  13. J Bacteriol. 2001 Sep;183(17):5187-97 [PMID: 11489873]
  14. J Bacteriol. 2015 Jul;197(13):2122-2128 [PMID: 25733620]
  15. JCI Insight. 2023 Jan 24;8(2): [PMID: 36512427]
  16. FEMS Microbiol Lett. 1998 Sep 15;166(2):341-5 [PMID: 9770291]
  17. J Vis Exp. 2013 Feb 07;(72): [PMID: 23426144]
  18. J Bacteriol. 2001 Apr;183(7):2212-8 [PMID: 11244059]
  19. Nat Chem Biol. 2017 Sep;13(9):1016-1021 [PMID: 28759019]
  20. J Biol Chem. 2016 Dec 9;291(50):25901-25910 [PMID: 27780864]
  21. Infect Immun. 1986 Dec;54(3):613-20 [PMID: 2877947]
  22. Mol Microbiol. 2004 May;52(4):1081-90 [PMID: 15130126]
  23. Dis Mon. 2003 Feb;49(2):71-82 [PMID: 12601338]
  24. Science. 2004 Sep 10;305(5690):1626-8 [PMID: 15361626]
  25. Metallomics. 2015 Jun;7(6):1011-22 [PMID: 25824627]
  26. J Biol Chem. 2015 Jun 26;290(26):15949-60 [PMID: 25861985]
  27. Cell Host Microbe. 2013 May 15;13(5):509-519 [PMID: 23684303]
  28. Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):7581-7586 [PMID: 29954861]
  29. mBio. 2022 Jan 4;13(1):e0239121 [PMID: 35089085]
  30. J Bacteriol. 1999 Feb;181(3):748-56 [PMID: 9922236]
  31. ACS Infect Dis. 2015 Nov 13;1(11):523-532 [PMID: 26985454]
  32. PLoS Pathog. 2009 Feb;5(2):e1000305 [PMID: 19229321]
  33. J Biol Chem. 1978 Mar 25;253(6):1930-7 [PMID: 204636]
  34. mBio. 2012 Nov 20;3(6): [PMID: 23169997]
  35. J Bacteriol. 1996 May;178(10):2742-8 [PMID: 8631660]
  36. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5977-82 [PMID: 16585510]
  37. Biometals. 2007 Jun;20(3-4):249-62 [PMID: 17216400]
  38. Annu Rev Microbiol. 2022 Sep 8;76:235-257 [PMID: 35609948]
  39. ACS Chem Biol. 2020 May 15;15(5):1154-1160 [PMID: 31869199]
  40. Anal Biochem. 1987 Jan;160(1):47-56 [PMID: 2952030]
  41. J Biol Chem. 2012 Aug 3;287(32):26727-39 [PMID: 22696215]
  42. J Clin Invest. 2017 Nov 1;127(11):4018-4030 [PMID: 28945201]
  43. Int J Med Microbiol. 2005 Apr;295(1):19-28 [PMID: 15861813]
  44. Proc Natl Acad Sci U S A. 2012 Jun 19;109(25):9857-62 [PMID: 22679291]
  45. ACS Chem Biol. 2014 Feb 21;9(2):551-61 [PMID: 24283977]
  46. J Proteome Res. 2011 Dec 2;10(12):5547-54 [PMID: 22035238]
  47. J Biol Chem. 2015 Jul 31;290(31):18967-74 [PMID: 26055720]
  48. Future Microbiol. 2018 Jun 1;13:745-756 [PMID: 29870278]
  49. J Biol Chem. 2018 Sep 28;293(39):14953-14961 [PMID: 30108176]
  50. J Bacteriol. 2008 Apr;190(8):3063-75 [PMID: 18281395]
  51. J Biol Chem. 2012 Apr 20;287(17):13524-31 [PMID: 22389496]
  52. Clin Microbiol Rev. 1997 Jan;10(1):35-66 [PMID: 8993858]
  53. J Infect Dis. 1995 Dec;172(6):1536-41 [PMID: 7594713]
  54. Mol Microbiol. 1996 Oct;22(2):315-25 [PMID: 8930916]
  55. Front Cell Infect Microbiol. 2013 Oct 02;3:59 [PMID: 24106689]

Grants

  1. R01 DK111930/NIDDK NIH HHS
  2. R01 DK125860/NIDDK NIH HHS
  3. KL2 TR002346/NCATS NIH HHS
  4. K08 AR076464/NIAMS NIH HHS
  5. UL1 TR002345/NCATS NIH HHS

MeSH Term

Humans
Siderophores
Uropathogenic Escherichia coli
Enterobactin
Iron
Urinary Tract Infections
Phenols
Thiazoles

Chemicals

Siderophores
Enterobactin
yersiniabactin
Iron
Phenols
Thiazoles

Word Cloud

Created with Highcharts 10.0.0siderophoresystemYbtironyersiniabactingrowthquorum-sensingbacterialenterobactinEnturinarytractinfectionsexpressionautoinducerpathogenicpotentialhumanhostsexpresssystemsredundantuptaketranscriptionalfunctionscombinedmayinfectedrelatedadaptationsmetabolicuropathogenicarisesregulationSiderophoressecretedferricionchelatorsusedobtainnutrient-limitedenvironmentalnichesincludingisolatespatientsadditionallygeneticallydistinctdeterminewhetherfunctionallycompareddifferentisogenicbiosyntheticmutantspresencetransferriniron-bindingproteinobservedcompensatedeficientfollowinglow-densityinoculationUsingproductanalysisfoundnon-redundancyattributabledensity-dependentstimulationcycleresultsdistinguishreflectpublicgoodwithincommunitiesadaptationconfinedsubcellularcompartmentsfunctionalitycontributeextraintestinalIMPORTANCEPatientsoftenstrainscarryingincreaseOneaccumulationmultiplescavengenutritionaluseimportantincreasedcostsproductiondiminishfitnesssiderophore-dependentconditionshowvirulence-associatedubiquitousdifferencesiron-scavengingactivitypreferentiallyexpressedcrowdingleavingbacteriadependentuponlowcelldensityNotablyregulatorymodestimulatesactingpreviouslyunappreciatedunexpectedresultconnectsYersiniabactinEscherichiacolihost-pathogeninteractionsacquisitionquorumsensingsecondarymetabolismsiderophoresinfectionvirulence

Similar Articles

Cited By