A minimal PBPK model to accelerate preclinical development of drugs against tuberculosis.

Federico Reali, Anna Fochesato, Chanchala Kaddi, Roberto Visintainer, Shayne Watson, Micha Levi, Véronique Dartois, Karim Azer, Luca Marchetti
Author Information
  1. Federico Reali: Fondazione The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.
  2. Anna Fochesato: Fondazione The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.
  3. Chanchala Kaddi: Gates Medical Research Institute, Cambridge, MD, United States.
  4. Roberto Visintainer: Fondazione The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.
  5. Shayne Watson: Gates Medical Research Institute, Cambridge, MD, United States.
  6. Micha Levi: Gates Medical Research Institute, Cambridge, MD, United States.
  7. Véronique Dartois: Hackensack Meridian Health, Nutley, NJ, United States.
  8. Karim Azer: Gates Medical Research Institute, Cambridge, MD, United States.
  9. Luca Marchetti: Fondazione The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy.

Abstract

Understanding drug exposure at disease target sites is pivotal to profiling new drug candidates in terms of tolerability and efficacy. Such quantification is particularly tedious for anti-tuberculosis (TB) compounds as the heterogeneous pulmonary microenvironment due to the infection may alter lung permeability and affect drug disposition. Murine models have been a longstanding support in TB research so far and are here used as human surrogates to unveil the distribution of several anti-TB compounds at the site-of-action via a novel and centralized PBPK design framework. As an intermediate approach between data-driven pharmacokinetic (PK) models and whole-body physiologically based (PB) PK models, we propose a parsimonious framework for PK investigation (minimal PBPK approach) that retains key physiological processes involved in TB disease, while reducing computational costs and prior knowledge requirements. By lumping together pulmonary TB-unessential organs, our minimal PBPK model counts 9 equations compared to the 36 of published full models, accelerating the simulation more than 3-folds in Matlab 2022b. The model has been successfully tested and validated against 11 anti-TB compounds-rifampicin, rifapentine, pyrazinamide, ethambutol, isoniazid, moxifloxacin, delamanid, pretomanid, bedaquiline, OPC-167832, GSK2556286 - showing robust predictability power in recapitulating PK dynamics in mice. Structural inspections on the proposed design have ensured global identifiability and listed free fraction in plasma and blood-to-plasma ratio as top sensitive parameters for PK metrics. The platform-oriented implementation allows fast comparison of the compounds in terms of exposure and target attainment. Discrepancies in plasma and lung levels for the latest BPaMZ and HPMZ regimens have been analyzed in terms of their impact on preclinical experiment design and on PK/PD indices. The framework we developed requires limited drug- and species-specific information to reconstruct accurate PK dynamics, delivering a unified viewpoint on anti-TB drug distribution at the site-of-action and a flexible fit-for-purpose tool to accelerate model-informed drug design pipelines and facilitate translation into the clinic.

Keywords

References

  1. Biopharm Drug Dispos. 2020 Apr;41(4-5):192-205 [PMID: 32342986]
  2. N Engl J Med. 2014 Oct 23;371(17):1599-608 [PMID: 25337749]
  3. Int J Mol Sci. 2022 Jan 17;23(2): [PMID: 35055170]
  4. Br J Pharmacol. 2022 Mar;179(6):1251-1263 [PMID: 34599506]
  5. Antimicrob Agents Chemother. 2013 Apr;57(4):1763-71 [PMID: 23357766]
  6. Arzneimittelforschung. 2000 Jan;50(1):60-71 [PMID: 10683718]
  7. Infect Immun. 1996 Jun;64(6):2062-9 [PMID: 8675308]
  8. Antimicrob Agents Chemother. 2021 Sep 17;65(10):e0050621 [PMID: 34252307]
  9. Lancet Respir Med. 2019 Dec;7(12):1048-1058 [PMID: 31732485]
  10. J Pharm Sci. 2006 Jun;95(6):1238-57 [PMID: 16639716]
  11. CPT Pharmacometrics Syst Pharmacol. 2013 Aug 14;2:e63 [PMID: 23945604]
  12. N Engl J Med. 2021 May 6;384(18):1705-1718 [PMID: 33951360]
  13. Clin Pharmacokinet. 2008;47(4):261-75 [PMID: 18336055]
  14. J Pharm Sci. 2005 Jun;94(6):1259-76 [PMID: 15858854]
  15. J Pharmacokinet Biopharm. 1991 Feb;19(1):21-50 [PMID: 2023108]
  16. Vet Res. 2017 Nov 7;48(1):73 [PMID: 29116026]
  17. Clin Pharmacokinet. 2023 Mar;62(3):519-532 [PMID: 36802057]
  18. Clin Pharmacokinet. 2015 Jan;54(1):117-27 [PMID: 25260695]
  19. Eur J Pharm Sci. 2022 Jun 1;173:106163 [PMID: 35248733]
  20. Comput Methods Programs Biomed. 2023 Jun;235:107517 [PMID: 37040682]
  21. J Pharmacokinet Pharmacodyn. 2012 Dec;39(6):711-23 [PMID: 23179857]
  22. Brief Bioinform. 2020 Mar 23;21(2):527-540 [PMID: 30753281]
  23. PLoS Med. 2019 Apr 2;16(4):e1002773 [PMID: 30939136]
  24. CPT Pharmacometrics Syst Pharmacol. 2019 Jul;8(7):444-459 [PMID: 30779335]
  25. J Pharm Pharmacol. 2012 Mar;64(3):383-96 [PMID: 22309270]
  26. Clin Transl Sci. 2017 Sep;10(5):366-379 [PMID: 28561946]
  27. Antimicrob Agents Chemother. 2021 Oct 18;65(11):e0058321 [PMID: 34370580]
  28. CPT Pharmacometrics Syst Pharmacol. 2022 Jul;11(7):805-821 [PMID: 35344639]
  29. J Vet Pharmacol Ther. 2016 Oct;39(5):421-38 [PMID: 27086878]
  30. J Biomed Biotechnol. 2011;2011:907461 [PMID: 21716673]
  31. N Engl J Med. 2014 Oct 23;371(17):1577-87 [PMID: 25196020]
  32. J Pharmacokinet Biopharm. 1998 Feb;26(1):21-46 [PMID: 9773391]
  33. J Pharm Sci. 2011 Oct;100(10):4074-89 [PMID: 21452299]
  34. Eur Respir J. 2022 Mar 24;59(3): [PMID: 34503982]
  35. CPT Pharmacometrics Syst Pharmacol. 2021 Nov;10(11):1382-1395 [PMID: 34623770]
  36. Front Pharmacol. 2021 Oct 29;12:770518 [PMID: 34776982]
  37. ACS Infect Dis. 2016 Apr 8;2(4):251-267 [PMID: 27227164]
  38. J Pharm Sci. 1983 Oct;72(10):1103-27 [PMID: 6358460]
  39. Antimicrob Agents Chemother. 2019 Oct 22;63(11): [PMID: 31451504]
  40. AAPS J. 2020 Feb 3;22(2):41 [PMID: 32016678]
  41. Am J Respir Cell Mol Biol. 2008 Nov;39(5):503-8 [PMID: 18556589]
  42. CPT Pharmacometrics Syst Pharmacol. 2017 Nov;6(11):787-797 [PMID: 28657202]
  43. J Pharmacokinet Pharmacodyn. 2021 Dec;48(6):861-871 [PMID: 34378151]
  44. BMC Bioinformatics. 2008 Dec 12;9 Suppl 12:S17 [PMID: 19091016]
  45. CPT Pharmacometrics Syst Pharmacol. 2019 Aug;8(8):557-566 [PMID: 31154668]
  46. J Antimicrob Chemother. 2015 Mar;70(3):857-67 [PMID: 25587994]
  47. Clin Pharmacol Ther. 2018 Jul;104(1):88-110 [PMID: 29315504]
  48. IET Syst Biol. 2011 Nov;5(6):336-6 [PMID: 22129029]
  49. J Pharm Sci. 2014 Jul;103(7):2189-2198 [PMID: 24832575]
  50. Biopharm Drug Dispos. 2021 Apr;42(4):107-117 [PMID: 33325034]
  51. J Antimicrob Chemother. 2022 Mar 31;77(4):880-902 [PMID: 35089314]
  52. J Pharmacokinet Pharmacodyn. 2009 Dec;36(6):613-28 [PMID: 19936895]
  53. Toxicol Ind Health. 1997 Jul-Aug;13(4):407-84 [PMID: 9249929]
  54. Front Pharmacol. 2022 Aug 12;13:964049 [PMID: 36034786]
  55. J Infect Dis. 2021 Sep 17;224(6):1039-1047 [PMID: 33502537]
  56. Clin Pharmacokinet. 2019 Nov;58(11):1355-1371 [PMID: 31236775]
  57. Nat Rev Microbiol. 2014 Mar;12(3):159-67 [PMID: 24487820]
  58. J Pharmacokinet Pharmacodyn. 2010 Aug;37(4):365-405 [PMID: 20661651]
  59. CPT Pharmacometrics Syst Pharmacol. 2023 Mar;12(3):333-345 [PMID: 36754967]
  60. Pharm Res. 2022 Aug;39(8):1733-1748 [PMID: 35445350]
  61. Bioinformatics. 2011 Sep 15;27(18):2610-1 [PMID: 21784792]

Word Cloud

Created with Highcharts 10.0.0drugPKPBPKmodelmodelsdesignminimaltermsTBcompoundsanti-TBframeworkexposurediseasetargetpulmonarylungdistributionsite-of-actionapproachsimulationdynamicsplasmapreclinicalacceleratedevelopmenttuberculosisUnderstandingsitespivotalprofilingnewcandidatestolerabilityefficacyquantificationparticularlytediousanti-tuberculosisheterogeneousmicroenvironmentdueinfectionmayalterpermeabilityaffectdispositionMurinelongstandingsupportresearchfarusedhumansurrogatesunveilseveralvianovelcentralizedintermediatedata-drivenpharmacokineticwhole-bodyphysiologicallybasedPBproposeparsimoniousinvestigationretainskeyphysiologicalprocessesinvolvedreducingcomputationalcostspriorknowledgerequirementslumpingtogetherTB-unessentialorganscounts9equationscompared36publishedfullaccelerating3-foldsMatlab2022bsuccessfullytestedvalidated11compounds-rifampicinrifapentinepyrazinamideethambutolisoniazidmoxifloxacindelamanidpretomanidbedaquilineOPC-167832GSK2556286-showingrobustpredictabilitypowerrecapitulatingmiceStructuralinspectionsproposedensuredglobalidentifiabilitylistedfreefractionblood-to-plasmaratiotopsensitiveparametersmetricsplatform-orientedimplementationallowsfastcomparisonattainmentDiscrepancieslevelslatestBPaMZHPMZregimensanalyzedimpactexperimentPK/PDindicesdevelopedrequireslimiteddrug-species-specificinformationreconstructaccuratedeliveringunifiedviewpointflexiblefit-for-purposetoolmodel-informedpipelinesfacilitatetranslationclinicdrugsantituberculosisagentsmPBPKinformedmodeling

Similar Articles

Cited By