mutants reveal variation in the nuclear genome.

Nasya Tomlekova, Dominika Idziak-Helmcke, Paula Franke, Magdalena Rojek-Jelonek, Jolanta Kwasniewska
Author Information
  1. Nasya Tomlekova: Laboratory of Molecular Biology, Department of Breeding, Marisa Vegetable Crops Research Institute, Plovdiv, Agricultural Academy, Sofia, Bulgaria.
  2. Dominika Idziak-Helmcke: Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
  3. Paula Franke: Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
  4. Magdalena Rojek-Jelonek: Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.
  5. Jolanta Kwasniewska: Plant Cytogenetics and Molecular Biology Group, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland.

Abstract

L. (common bean) is an essential source of proteins in the human diet worldwide. Bean breeding programs to increase genetic diversity based on induced mutagenesis have a long tradition in Bulgaria. Common bean varieties with high productivity, wide environmental adaptability, good nutritional properties, and improved disease resistance have been successfully developed. In this study, we aimed to investigate selected nuclear genome features, such as the genome size, the number and chromosomal distribution of 5S and 35S rDNA loci by using the fluorescence hybridization (FISH), as well as the level of DNA damage in some local Bulgarian accessions and mutants of . Flow cytometry analyses revealed no significant differences in genome size between analyzed lines except for one of the analyzed mutants, M19. The value of genome size 2C DNA is about 1.37 pg2C for all lines, whereas it is 1.42 pg2C for M19. The chromosome number remains the same (2n=22) for all analyzed lines. Results of FISH analyses showed that the number of 5S rDNA was stable among accessions and mutant lines (four loci), while the number of 35S rDNA loci was shown as highly polymorphic, varying between ten and sixteen, and displaying differences in the size and location of 35S rDNA loci between analyzed genotypes. The cell cycle profile was different for the analyzed genotypes. The results revealed that wide variation in genome organization and size as well as DNA damage characterizes the analyzed genetic resources of the common bean.

Keywords

References

  1. Chromosome Res. 2004;12(2):153-61 [PMID: 15053485]
  2. Theor Appl Genet. 2010 Sep;121(5):829-43 [PMID: 20490446]
  3. BMC Plant Biol. 2021 Apr 17;21(1):184 [PMID: 33865309]
  4. Theor Appl Genet. 2008 Apr;116(6):745-53 [PMID: 18214422]
  5. Theor Appl Genet. 2016 May;129(5):977-90 [PMID: 26849238]
  6. BMC Genomics. 2020 Nov 16;21(1):799 [PMID: 33198642]
  7. Genes (Basel). 2019 Dec 28;11(1): [PMID: 31905657]
  8. Genet Resour Crop Evol. 2019;66(3):707-722 [PMID: 30956400]
  9. Genet Mol Biol. 2011 Jul;34(3):459-63 [PMID: 21931520]
  10. PLoS One. 2019 Feb 7;14(2):e0212140 [PMID: 30730982]
  11. Cytogenet Genome Res. 2011;132(3):212-7 [PMID: 21063080]
  12. Am J Bot. 1998 Jan;85(1):1 [PMID: 21684873]
  13. Theor Appl Genet. 2005 Feb;110(3):432-44 [PMID: 15655667]
  14. G3 (Bethesda). 2016 Apr 07;6(4):1013-22 [PMID: 26865698]
  15. Theor Appl Genet. 2009 Mar;118(5):979-92 [PMID: 19130029]
  16. Theor Appl Genet. 2012 May;124(8):1513-20 [PMID: 22331139]
  17. Evol Appl. 2009 Nov;2(4):504-22 [PMID: 25567895]
  18. Nucleic Acids Res. 1990 Jul 11;18(13):4011 [PMID: 2100998]
  19. Chromosome Res. 2010 Jun;18(4):487-502 [PMID: 20449646]
  20. Theor Appl Genet. 2009 Oct;119(6):955-72 [PMID: 19688198]
  21. PLoS One. 2013 Jun 26;8(6):e67345 [PMID: 23840668]
  22. Front Plant Sci. 2019 Jul 24;10:962 [PMID: 31428109]
  23. Nucleic Acids Res. 1980 Nov 11;8(21):4851-65 [PMID: 7443527]
  24. BMC Plant Biol. 2011 Mar 24;11:52 [PMID: 21435233]
  25. Genes Genet Syst. 2001 Feb;76(1):9-14 [PMID: 11376554]
  26. Front Plant Sci. 2017 May 15;8:799 [PMID: 28555152]
  27. Front Plant Sci. 2016 May 03;7:600 [PMID: 27200068]
  28. Plant J. 2019 Jan;97(1):8-18 [PMID: 30368955]
  29. New Phytol. 2022 Sep;235(6):2454-2465 [PMID: 35708662]
  30. Chromosome Res. 2022 Dec;30(4):477-492 [PMID: 35715657]
  31. Theor Appl Genet. 2013 Jul;126(7):1909-16 [PMID: 23649647]
  32. Chromosome Res. 2009;17(3):405-17 [PMID: 19330455]
  33. Genome Biol. 2016 Feb 25;17:32 [PMID: 26911872]
  34. Sci Rep. 2021 Feb 3;11(1):2964 [PMID: 33536468]
  35. Chromosome Res. 2007;15(1):85-95 [PMID: 17295129]
  36. Theor Appl Genet. 2006 Mar;112(5):924-33 [PMID: 16397788]
  37. Genome. 1999 Dec;42(6):1224-33 [PMID: 10659791]
  38. Mutat Res Genet Toxicol Environ Mutagen. 2016 Dec;812:20-28 [PMID: 27908384]
  39. Nat Protoc. 2007;2(1):88-98 [PMID: 17401342]
  40. Genes (Basel). 2018 Oct 23;9(11): [PMID: 30360561]
  41. Ann Bot. 2006 Feb;97(2):205-16 [PMID: 16357054]

Word Cloud

Created with Highcharts 10.0.0genomesizeanalyzedbeannumberrDNAlociDNAlinescommon35SFISHdamagemutantsgeneticmutagenesiswidenuclear5SwellaccessionsanalysesrevealeddifferencesM191pg2CgenotypescellcyclevariationLessentialsourceproteinshumandietworldwideBeanbreedingprogramsincreasediversitybasedinducedlongtraditionBulgariaCommonvarietieshighproductivityenvironmentaladaptabilitygoodnutritionalpropertiesimproveddiseaseresistancesuccessfullydevelopedstudyaimedinvestigateselectedfeatureschromosomaldistributionusingfluorescencehybridizationlevellocalBulgarianFlowcytometrysignificantexceptonevalue2C37whereas42chromosomeremains2n=22Resultsshowedstableamongmutantfourshownhighlypolymorphicvaryingtensixteendisplayinglocationprofiledifferentresultsorganizationcharacterizesresourcesrevealchemical

Similar Articles

Cited By (1)