Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting.

Shrouq Twal, Nisrein Jaber, Mayyas Al-Remawi, Islam Hamad, Faisal Al-Akayleh, Walhan Alshaer
Author Information
  1. Shrouq Twal: Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan malremawi@uop.edu.jo (+962) 797683190.
  2. Nisrein Jaber: Faculty of Pharmacy, Al Zaytoonah University of Jordan Amman 11733 Jordan.
  3. Mayyas Al-Remawi: Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan malremawi@uop.edu.jo (+962) 797683190.
  4. Islam Hamad: Faculty of Health Sciences, American University of Madaba Amman 11821 Jordan.
  5. Faisal Al-Akayleh: Faculty of Pharmacy and Medical Sciences, University of Petra Amman 1196 Jordan malremawi@uop.edu.jo (+962) 797683190. ORCID
  6. Walhan Alshaer: Cell Therapy Center, The University of Jordan Amman 11942 Jordan walhan.alshaer@ju.edu.jo (+962) 790823678. ORCID

Abstract

A dual stimuli-responsive nanocarrier was developed from smart biocompatible chitosan and soluplus graft copolymers. The copolymerization was investigated by differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared (FTIR). The optimized chitosan-soluplus nanoparticles (CS-SP NPs) were further used for the encapsulation of a poorly water-soluble anticancer drug. Tamoxifen citrate (TC) was used as the model drug and it was loaded in CS-SP NPs. TC CS-SP NPs were characterized in terms of particle size, zeta potential, polydispersity, morphology, encapsulation efficiency, and physical stability. The nanoparticles showed homogenous spherical features with a size around 94 nm, a slightly positive zeta potential, and an encapsulation efficiency around 96.66%. Dynamic light scattering (DLS), drug release, and cytotoxicity confirmed that the created nano-system is smart and exhibits pH and temperature-responsive behavior. cellular uptake was evaluated by flow cytometry and confocal microscopy. The nanoparticles revealed a triggered increase in size upon reaching the lower critical solution temperature of SP, with 70% of drug release at acidic pH and 40 °C within the first hour and a 3.5-fold increase in cytotoxicity against MCF7 cells incubated at 40 °C. The cellular uptake study manifested that the prepared nanoparticles succeeded in delivering drug molecules to MCF7 and MDA-MB-231 cells. In summary, the distinctive characteristics provided by these novel CS-SP NPs result in a promising nano-platform for effective drug delivery in cancer treatment.

References

  1. IEEE Eng Med Biol Mag. 2008 Jan-Feb;27(1):64-6 [PMID: 18270051]
  2. Biomater Sci. 2020 Oct 27;8(21):5787-5803 [PMID: 33006349]
  3. Adv Drug Deliv Rev. 2015 Aug 30;91:3-6 [PMID: 25579058]
  4. J Control Release. 2021 Apr 10;332:312-336 [PMID: 33652113]
  5. Pharmaceutics. 2019 Apr 11;11(4): [PMID: 30978912]
  6. Polymers (Basel). 2022 Nov 14;14(22): [PMID: 36433032]
  7. J Biomater Appl. 2016 Nov;31(5):755-772 [PMID: 27664187]
  8. Carbohydr Polym. 2022 Sep 1;291:119579 [PMID: 35698397]
  9. J Microencapsul. 2012;29(4):309-22 [PMID: 22251238]
  10. Drug Deliv Transl Res. 2022 Aug;12(8):1991-2006 [PMID: 35604634]
  11. Pharmaceutics. 2019 Dec 06;11(12): [PMID: 31817615]
  12. Chem Soc Rev. 2017 Jun 21;46(12):3830-3852 [PMID: 28516983]
  13. Nat Rev Dis Primers. 2019 Sep 23;5(1):66 [PMID: 31548545]
  14. Biochem Biophys Res Commun. 2018 Jan 1;495(1):414-420 [PMID: 29097204]
  15. Cancers (Basel). 2022 Dec 20;15(1): [PMID: 36612002]
  16. Drug Dev Ind Pharm. 2020 Oct;46(10):1695-1704 [PMID: 32893676]
  17. Drug Deliv Transl Res. 2019 Apr;9(2):520-533 [PMID: 29488170]
  18. Drug Deliv. 2021 Dec;28(1):1626-1636 [PMID: 34328806]
  19. J Biomater Sci Polym Ed. 2018 Feb;29(3):277-308 [PMID: 29212412]
  20. Cancer Res. 2013 Apr 15;73(8):2412-7 [PMID: 23423979]
  21. J Control Release. 2021 Apr 10;332:127-147 [PMID: 33609621]
  22. J Colloid Interface Sci. 2020 Mar 1;561:11-22 [PMID: 31812857]
  23. Nanoscale. 2015 Jun 7;7(21):9655-63 [PMID: 25959728]
  24. Molecules. 2018 Oct 16;23(10): [PMID: 30332830]
  25. Nanotechnology. 2023 Jan 13;34(12): [PMID: 36595237]
  26. Pharmaceutics. 2018 May 18;10(2): [PMID: 29783687]
  27. Drug Dev Ind Pharm. 2017 Sep;43(9):1510-1518 [PMID: 28425305]
  28. Nanotechnol Sci Appl. 2015 Dec 11;8:67-80 [PMID: 26715842]
  29. Int J Pharm. 2018 Jul 30;546(1-2):255-262 [PMID: 29792987]
  30. AAPS J. 2016 Nov;18(6):1373-1378 [PMID: 27480318]
  31. Molecules. 2020 Mar 05;25(5): [PMID: 32151063]
  32. Pharm Dev Technol. 2022 Apr;27(4):479-489 [PMID: 35575443]
  33. Ther Deliv. 2020 Oct;11(10):613-635 [PMID: 32933425]
  34. ACS Appl Mater Interfaces. 2022 Mar 30;14(12):14791-14804 [PMID: 35312278]
  35. Int J Nanomedicine. 2014 Jun 25;9:3107-18 [PMID: 25028549]
  36. Nat Rev Cancer. 2017 Jan;17(1):20-37 [PMID: 27834398]
  37. Nat Rev Mater. 2021 Apr;6(4):351-370 [PMID: 34950512]
  38. Colloids Surf B Biointerfaces. 2017 Jun 1;154:287-296 [PMID: 28351801]
  39. Nanomaterials (Basel). 2020 Dec 30;11(1): [PMID: 33396938]
  40. Spectrochim Acta A Mol Biomol Spectrosc. 2014 Apr 24;124:178-86 [PMID: 24486862]
  41. J Biomater Sci Polym Ed. 2017 Jan;28(1):50-62 [PMID: 27691398]
  42. Bioconjug Chem. 2015 Jul 15;26(7):1307-13 [PMID: 25343502]
  43. IET Nanobiotechnol. 2021 Feb;15(1):19-27 [PMID: 34694727]
  44. J Colloid Interface Sci. 2019 Feb 15;536:224-234 [PMID: 30368094]
  45. Ecancermedicalscience. 2019;13:961 [PMID: 31537986]
  46. Int J Biol Macromol. 2016 Oct;91:716-23 [PMID: 27287772]
  47. Biomed Res Int. 2019 Jan 20;2019:2161348 [PMID: 30800663]
  48. Surg Today. 2003;33(4):243-8 [PMID: 12707816]
  49. Int J Biol Macromol. 2019 Jun 1;130:727-736 [PMID: 30771392]
  50. Pharmaceutics. 2020 Jul 04;12(7): [PMID: 32635539]
  51. Colloids Surf B Biointerfaces. 2016 Mar 1;139:52-61 [PMID: 26700233]
  52. Saudi Pharm J. 2017 Mar;25(3):419-439 [PMID: 28344498]
  53. Chem Rev. 2016 Oct 12;116(19):12536-12563 [PMID: 27680291]
  54. Biomaterials. 2011 Jan;32(2):503-15 [PMID: 20934747]
  55. Biomacromolecules. 2013 May 13;14(5):1434-43 [PMID: 23627834]
  56. Nanomaterials (Basel). 2015 Oct 14;5(4):1690-1703 [PMID: 28347089]
  57. Int J Mol Sci. 2022 Aug 19;23(16): [PMID: 36012646]
  58. Expert Opin Drug Deliv. 2018 May;15(5):495-507 [PMID: 29521126]
  59. Ultrason Sonochem. 2017 Nov;39:144-152 [PMID: 28732931]
  60. Pharmaceutics. 2018 Aug 22;10(3): [PMID: 30131473]
  61. Biomaterials. 2014 Apr;35(13):4213-22 [PMID: 24529391]
  62. Colloids Surf B Biointerfaces. 2018 Jan 1;161:302-313 [PMID: 29096375]
  63. Front Bioeng Biotechnol. 2021 Jun 25;9:707319 [PMID: 34249894]
  64. Polymers (Basel). 2018 Jan 26;10(2): [PMID: 30966153]

Word Cloud

Created with Highcharts 10.0.0drugnanoparticlesCS-SPNPsencapsulationsizestimuli-responsivesmartchitosansoluplususedTCzetapotentialefficiencyaroundreleasecytotoxicitypHcellularuptakeincrease40°CMCF7cellscancerdualnanocarrierdevelopedbiocompatiblegraftcopolymerscopolymerizationinvestigateddifferentialscanningcalorimetryDSCthermo-gravimetricanalysisTGAFouriertransforminfraredFTIRoptimizedchitosan-solupluspoorlywater-solubleanticancerTamoxifencitratemodelloadedcharacterizedtermsparticlepolydispersitymorphologyphysicalstabilityshowedhomogenoussphericalfeatures94nmslightlypositive9666%DynamiclightscatteringDLSconfirmedcreatednano-systemexhibitstemperature-responsivebehaviorevaluatedflowcytometryconfocalmicroscopyrevealedtriggereduponreachinglowercriticalsolutiontemperatureSP70%acidicwithinfirsthour35-foldincubatedstudymanifestedpreparedsucceededdeliveringmoleculesMDA-MB-231summarydistinctivecharacteristicsprovidednovelresultpromisingnano-platformeffectivedeliverytreatmentDualpolymericcombiningenhancedbreasttargeting

Similar Articles

Cited By