MHCLMDA: multihypergraph contrastive learning for miRNA-disease association prediction.

Wei Peng, Zhichen He, Wei Dai, Wei Lan
Author Information
  1. Wei Peng: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China and Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China. ORCID
  2. Zhichen He: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China.
  3. Wei Dai: Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China and Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China.
  4. Wei Lan: Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning 530004, China. ORCID

Abstract

The correct prediction of disease-associated miRNAs plays an essential role in disease prevention and treatment. Current computational methods to predict disease-associated miRNAs construct different miRNA views and disease views based on various miRNA properties and disease properties and then integrate the multiviews to predict the relationship between miRNAs and diseases. However, most existing methods ignore the information interaction among the views and the consistency of miRNA features (disease features) across multiple views. This study proposes a computational method based on multiple hypergraph contrastive learning (MHCLMDA) to predict miRNA-disease associations. MHCLMDA first constructs multiple miRNA hypergraphs and disease hypergraphs based on various miRNA similarities and disease similarities and performs hypergraph convolution on each hypergraph to capture higher order interactions between nodes, followed by hypergraph contrastive learning to learn the consistent miRNA feature representation and disease feature representation under different views. Then, a variational auto-encoder is employed to extract the miRNA and disease features in known miRNA-disease association relationships. Finally, MHCLMDA fuses the miRNA and disease features from different views to predict miRNA-disease associations. The parameters of the model are optimized in an end-to-end way. We applied MHCLMDA to the prediction of human miRNA-disease association. The experimental results show that our method performs better than several other state-of-the-art methods in terms of the area under the receiver operating characteristic curve and the area under the precision-recall curve.

Keywords

References

  1. Bioinformatics. 2018 Jan 15;34(2):239-248 [PMID: 28968779]
  2. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  3. PLoS Comput Biol. 2021 Jun 3;17(6):e1009048 [PMID: 34081706]
  4. Brief Funct Genomics. 2016 Jan;15(1):55-64 [PMID: 26134276]
  5. Cell. 2010 Apr 2;141(1):129-41 [PMID: 20371350]
  6. Methods. 2017 Jul 15;124:69-77 [PMID: 28576328]
  7. IEEE J Biomed Health Inform. 2022 Jan;26(1):446-457 [PMID: 34111017]
  8. Brief Bioinform. 2021 Nov 5;22(6): [PMID: 33963829]
  9. Brief Bioinform. 2021 Jan 18;22(1):485-496 [PMID: 31927572]
  10. Nat Struct Mol Biol. 2010 Jul;17(7):909-15 [PMID: 20601959]
  11. Brief Bioinform. 2022 May 13;23(3): [PMID: 35323901]
  12. Nucleic Acids Res. 2019 Jan 8;47(D1):D1013-D1017 [PMID: 30364956]
  13. Sci Rep. 2014 Jun 30;4:5501 [PMID: 24975600]
  14. Cells. 2020 Apr 03;9(4): [PMID: 32260218]
  15. Brief Bioinform. 2023 Mar 19;24(2): [PMID: 36790856]
  16. Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73 [PMID: 24275495]
  17. Front Cell Dev Biol. 2021 Jun 10;9:603758 [PMID: 34178973]
  18. Bioinformatics. 2019 Nov 1;35(21):4364-4371 [PMID: 30977780]
  19. Oncol Rep. 2015 Dec;34(6):3088-96 [PMID: 26398698]
  20. Nature. 2008 Nov 27;456(7221):464-9 [PMID: 18978773]
  21. Nucleic Acids Res. 2020 Jan 8;48(D1):D148-D154 [PMID: 31647101]
  22. Brief Bioinform. 2023 Jan 19;24(1): [PMID: 36562706]
  23. IEEE/ACM Trans Comput Biol Bioinform. 2023 Nov-Dec;20(6):3363-3375 [PMID: 35776822]
  24. Bioinformatics. 2020 Apr 15;36(8):2538-2546 [PMID: 31904845]
  25. Brief Bioinform. 2022 Nov 19;23(6): [PMID: 36151749]
  26. Curr Opin Genet Dev. 2005 Oct;15(5):563-8 [PMID: 16099643]
  27. Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839 [PMID: 27924018]
  28. Cell Oncol (Dordr). 2016 Feb;39(1):23-33 [PMID: 26458815]
  29. J Mol Biol. 1970 Mar;48(3):443-53 [PMID: 5420325]
  30. Cancer Genomics Proteomics. 2017 01-02;14(1):75-82 [PMID: 28031239]
  31. PLoS Comput Biol. 2017 Mar 24;13(3):e1005455 [PMID: 28339468]
  32. PLoS Comput Biol. 2021 Dec 10;17(12):e1009655 [PMID: 34890410]
  33. BMC Bioinformatics. 2019 Jul 25;20(1):404 [PMID: 31345171]
  34. J Biomed Inform. 2017 Feb;66:194-203 [PMID: 28104458]
  35. J Comput Aided Mol Des. 2018 May;32(5):633-642 [PMID: 29687309]
  36. Bioinformatics. 2018 Dec 15;34(24):4256-4265 [PMID: 29939227]
  37. Cell. 2004 Jan 23;116(2):281-97 [PMID: 14744438]
  38. Interdiscip Sci. 2022 Jun;14(2):607-622 [PMID: 35428965]
  39. Brief Bioinform. 2022 Sep 20;23(5): [PMID: 35849099]
  40. BMC Genomics. 2010 Dec 02;11 Suppl 4:S5 [PMID: 21143814]
  41. JAMA. 1994 Apr 13;271(14):1103-8 [PMID: 8151853]
  42. IEEE Trans Nanobioscience. 2017 Mar;16(2):100-107 [PMID: 27913356]
  43. Brief Bioinform. 2023 Mar 19;24(2): [PMID: 36907654]

Grants

  1. 61972185/National Natural Science Foundation of China
  2. 2019FA024/Natural Science Foundation of Yunnan Province of China
  3. /Yunnan Ten Thousand Talents Plan

MeSH Term

Humans
MicroRNAs
Algorithms
Computational Biology
ROC Curve

Chemicals

MicroRNAs

Word Cloud

Created with Highcharts 10.0.0diseasemiRNAviewshypergraphlearningmiRNA-diseasepredictionpredictfeaturescontrastiveMHCLMDAassociationmiRNAsmethodsdifferentbasedmultipledisease-associatedcomputationalvariouspropertiesmethodassociationshypergraphssimilaritiesperformsconvolutionfeaturerepresentationareacurvecorrectplaysessentialrolepreventiontreatmentCurrentconstructintegratemultiviewsrelationshipdiseasesHoweverexistingignoreinformationinteractionamongconsistencyacrossstudyproposesfirstconstructscapturehigherorderinteractionsnodesfollowedlearnconsistentvariationalauto-encoderemployedextractknownrelationshipsFinallyfusesparametersmodeloptimizedend-to-endwayappliedhumanexperimentalresultsshowbetterseveralstate-of-the-arttermsreceiveroperatingcharacteristicprecision-recallMHCLMDA:multihypergraphMiRNA–diseasemultiomicsdatafusionmultiview

Similar Articles

Cited By