Driving among individuals with chronic conditions: A systematic review of applied research using kinematic driving sensors.

Srijani Mukherjee, Anthony D McDonald, Shelli R Kesler, Heather Cuevas, Chad Swank, Alan Stevens, Thomas K Ferris, Valerie Danesh
Author Information
  1. Srijani Mukherjee: Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas, USA.
  2. Anthony D McDonald: Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA. ORCID
  3. Shelli R Kesler: School of Nursing, The University of Texas at Austin, Austin, Texas, USA.
  4. Heather Cuevas: School of Nursing, The University of Texas at Austin, Austin, Texas, USA.
  5. Chad Swank: Baylor Scott & White Institute for Rehabilitation, Dallas, Texas, USA.
  6. Alan Stevens: Baylor Scott & White Research Institute, Dallas, Texas, USA.
  7. Thomas K Ferris: Department of Industrial and Systems Engineering, Texas A&M University, College Station, Texas, USA.
  8. Valerie Danesh: Baylor Scott & White Research Institute, Dallas, Texas, USA. ORCID

Abstract

BACKGROUND: Kinematic driving data studies are a novel methodology relevant to health care, but prior studies have considerable variance in their methods, populations, and findings suggesting a need for critical analysis and appraisal for feasibility and methodological guidelines.
METHODS: We assessed kinematic driving studies of adults with chronic conditions for study feasibility, characteristics, and key findings, to generate recommendations for future study designs, and to identify promising directions for applications of kinematic driving data. PRISMA was used to guide the review and searches included PubMed, CINAHL, and Compendex. Of 379 abstract/titles screened, 49 full-text articles were reviewed, and 29 articles met inclusion criteria of analyzing trip-level kinematic driving data from adult drivers with chronic conditions.
RESULTS: The predominant chronic conditions studied were Alzheimer's disease and related Dementias, obstructive sleep apnea, and diabetes mellitus. Study objectives included feasibility testing of kinematic driving data collection in the context of chronic conditions, comparisons of simulation with real-world kinematic driving behavior, assessments of driving behavior effects associated with chronic conditions, and prognostication or disease classification drawn from kinematic driving data. Across the studies, there was no consensus on devices, measures, or sampling parameters; however, studies showed evidence that driving behavior could reliably differentiate between adults with chronic conditions and healthy controls.
CONCLUSIONS: Vehicle sensors can provide driver-specific measures relevant to clinical assessment and interventions. Using kinematic driving data to assess and address driving measures of individuals with multiple chronic conditions is positioned to amplify a functional outcome measure that matters to patients.

Keywords

References

  1. Clin Interv Aging. 2021 Aug 06;16:1473-1483 [PMID: 34393481]
  2. J Appl Gerontol. 2019 Feb;38(2):277-289 [PMID: 28380718]
  3. JAMA Intern Med. 2023 May 1;183(5):493-495 [PMID: 36976554]
  4. Accid Anal Prev. 2022 Aug;173:106692 [PMID: 35605288]
  5. Accid Anal Prev. 2013 Jan;50:724-31 [PMID: 22795036]
  6. Appl Hum Factors Ergon Conf. 2017;597:242-250 [PMID: 29057396]
  7. Sleep. 2022 Jun 13;45(6): [PMID: 35303111]
  8. J Am Geriatr Soc. 2012 Nov;60(11):2056-62 [PMID: 23110378]
  9. Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des. 2013;2013:142-148 [PMID: 25374964]
  10. Transp Res Part F Traffic Psychol Behav. 2018 Oct;58:25-38 [PMID: 30559601]
  11. Accid Anal Prev. 2017 Jun;103:10-19 [PMID: 28371637]
  12. J Alzheimers Dis. 2018;63(4):1499-1508 [PMID: 29782312]
  13. Sleep Health. 2021 Oct;7(5):644-651 [PMID: 33935013]
  14. Alzheimers Dement (N Y). 2019 Nov 19;5:751-770 [PMID: 31921966]
  15. Sleep. 2018 Apr 1;41(4): [PMID: 29408974]
  16. Arch Neurol. 1996 May;53(5):411-6 [PMID: 8624215]
  17. Trends Neurosci. 2018 Aug;41(8):493-496 [PMID: 29907436]
  18. F1000Res. 2016 Sep 26;5:2376 [PMID: 27990264]
  19. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  20. Am J Occup Ther. 2015 May-Jun;69(3):6903270030p1-7 [PMID: 25871601]
  21. J Intell Transp Syst. 2017;21(5):422-434 [PMID: 30344458]
  22. J Gerontol A Biol Sci Med Sci. 2009 Feb;64(2):300-5 [PMID: 19181711]
  23. J Alzheimers Dis. 2021;79(3):1009-1014 [PMID: 33361605]
  24. Front Psychol. 2020 Oct 27;11:596257 [PMID: 33192943]
  25. Int J Nurs Stud. 2023 Oct;146:104560 [PMID: 37531701]
  26. Int J Automot Eng. 2019;10(1):34-40 [PMID: 34306907]
  27. Geriatrics (Basel). 2021 Apr 23;6(2): [PMID: 33922735]
  28. J Int Neuropsychol Soc. 2021 May;27(5):426-438 [PMID: 33046162]
  29. PM R. 2022 Feb;14(2):259-272 [PMID: 35077003]
  30. Alzheimers Res Ther. 2021 Jun 14;13(1):115 [PMID: 34127064]
  31. Transp Res Rec. 2013;2392:22-30 [PMID: 26203202]
  32. Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des. 2017 Jun;2017:23-29 [PMID: 29629434]
  33. J Alzheimers Dis. 2019;68(4):1625-1633 [PMID: 30958365]
  34. Proc Int Driv Symp Hum Factors Driv Assess Train Veh Des. 2017;2017:9-15 [PMID: 29399673]
  35. J Alzheimers Dis Rep. 2020 Jan 02;4(1):1-7 [PMID: 32104782]
  36. Geriatrics (Basel). 2018 Jun;3(2): [PMID: 29632868]
  37. Neurol Sci. 2021 Dec;42(12):4953-4963 [PMID: 34581880]
  38. Traffic Inj Prev. 2019;20(sup2):S26-S31 [PMID: 31617757]
  39. Clin Neuropsychol. 2019 Feb;33(2):357-368 [PMID: 30394172]
  40. Proc Hum Factors Ergon Soc Annu Meet. 2013 Sep;57(1):1859-1863 [PMID: 26500422]
  41. Accid Anal Prev. 2014 Oct;71:106-14 [PMID: 24906164]
  42. J Geriatr Psychiatry Neurol. 2004 Dec;17(4):232-40 [PMID: 15533995]
  43. J Int Neuropsychol Soc. 2018 May;24(5):486-497 [PMID: 29283079]
  44. F1000Res. 2016 Jul 15;5:1716 [PMID: 27785360]
  45. J Geriatr Psychiatry Neurol. 2013 Mar;26(1):10-8 [PMID: 23385363]
  46. Accid Anal Prev. 2021 Mar;151:105965 [PMID: 33429206]

Grants

  1. R21 AG080339/NIA NIH HHS
  2. 1R21AG080339-01/NIA NIH HHS

MeSH Term

Humans
Automobile Driving
Chronic Disease
Biomechanical Phenomena
Aged
Alzheimer Disease
Sleep Apnea, Obstructive
Diabetes Mellitus

Word Cloud

Created with Highcharts 10.0.0drivingkinematicchronicconditionsdatastudiesfeasibilitybehaviormeasuresrelevantfindingsadultsstudyreviewincludedarticlesdiseasesensorsindividualsfunctionalBACKGROUND:KinematicnovelmethodologyhealthcarepriorconsiderablevariancemethodspopulationssuggestingneedcriticalanalysisappraisalmethodologicalguidelinesMETHODS:assessedcharacteristicskeygeneraterecommendationsfuturedesignsidentifypromisingdirectionsapplicationsPRISMAusedguidesearchesPubMedCINAHLCompendex379abstract/titlesscreened49full-textreviewed29metinclusioncriteriaanalyzingtrip-leveladultdriversRESULTS:predominantstudiedAlzheimer'srelatedDementiasobstructivesleepapneadiabetesmellitusStudyobjectivestestingcollectioncontextcomparisonssimulationreal-worldassessmentseffectsassociatedprognosticationclassificationdrawnAcrossconsensusdevicessamplingparametershowevershowedevidencereliablydifferentiatehealthycontrolsCONCLUSIONS:Vehiclecanprovidedriver-specificclinicalassessmentinterventionsUsingassessaddressmultiplepositionedamplifyoutcomemeasurematterspatientsDrivingamongconditions:systematicappliedresearchusingsafetyoutcomes

Similar Articles

Cited By