BACKGROUND: Antimicrobial peptides (AMPs) are promising alternative agents for antibiotics to overcome antibiotic resistance problems. But, it is difficult to produce large-scale antimicrobial research due to the toxicity towards expression hosts or degradation by peptidases in the host. Therefore, heterologous recombinant expression of antimicrobial peptides has always been a challenging issue. OBJECTIVES: To overcome toxicity to the expression host and low expression level, a new photocleavable protein fusion expression method for antimicrobial peptides is provided.3 Methods: Through directed evolution and high throughput screening, a photocleavable protein mutant R6-2-6-4 with a higher photocleavage efficiency was obtained. The DNA coding sequence of antimicrobial peptide Histatin 1 was fused within the sequence of R6-2-6-4 gene. The fusion gene was successfully expressed in expression system. RESULTS: Antimicrobial peptide Histatin 1 could be successfully expressed and purified by fusing within PhoCl mutant R6-2-6-4. The antimicrobial activity was rarely affected, and the MIC value was 33 ug/mL, which was basically equivalent to 32 ug/mL of the chemically synthesized Histatin 1. After amplification in a 5 L fermenter, the expression of PhoCl mutant (R6-2-6-4)-Histatin1 improved up to 87.6 mg/L in fermenter, and Histatin1 obtained by photocleavage also could up to 11 mg/L. The prepared Histatin1 powder remained stable when stored at 4oC for up to 4 months without any degradation. In addition, the expression and photocleavage of β -Defensin105 and Lysostaphin verified the certain universality of the PhoCl mutant fusion expression system. CONCLUSION: Antimicrobial peptides Histatin 1, β -Defensin 105 and Lysostaphin were successfully expressed and purified by photocleavable protein mutant. This may provide a novel strategy to express and purify antimicrobial peptides in the expression system.
Randhawa G.; Sharma R.; Chemotherapeutic potential of cow urine: A review. J Intercult Ethnopharmacol 2015,4(2),180-186
[DOI: 10.5455/jice.20150222100320]
Pacheco T.; Bustos R.H.; González D.; Garzón V.; García J.C.; Ramírez D.; An approach to measuring colistin plasma levels regarding the treatment of multidrug-resistant bacterial infection. Antibiotics 2019,8(3),100
[DOI: 10.3390/antibiotics8030100]
Eltai N.O.; Al Thani A.A.; Al Hadidi S.H.; Al Ansari K.; Yassine H.M.; Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol 2020,20(1),54
[DOI: 10.1186/s12866-020-01732-8]
Rima M.; Rima M.; Fajloun Z.; Sabatier J.M.; Bechinger B.; Naas T.; Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics 2021,10(9),1095
[DOI: 10.3390/antibiotics10091095]
Zhang R.; Xu L.; Dong C.; Antimicrobial peptides: An overview of their structure, function and mechanism of action. Protein Pept Lett 2022,29(8),641-650
[DOI: 10.2174/0929866529666220613102145]
Erdem Büyükkiraz M.; Kesmen Z.; Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J Appl Microbiol 2022,132(3),1573-1596
[DOI: 10.1111/jam.15314]
Wang C.; Hong T.; Cui P.; Wang J.; Xia J.; Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 2021,175,113818
[DOI: 10.1016/j.addr.2021.05.028]
Kang H.K.; Kim C.; Seo C.H.; Park Y.; The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J Microbiol 2017,55(1),1-12
[DOI: 10.1007/s12275-017-6452-1]
Annunziato G.; Costantino G.; Antimicrobial peptides (AMPs): A patent review (2015–2020). Expert Opin Ther Pat 2020,30(12),931-947
[DOI: 10.1080/13543776.2020.1851679]
Divyashree M.; Mani M.K.; Reddy D.; Kumavath R.; Ghosh P.; Azevedo V.; Barh D.; Clinical applications of antimicrobial peptides (AMPs): Where do we stand now? Protein Pept Lett 2020,27(2),120-134
[DOI: 10.2174/0929866526666190925152957]
Powell W.A.; Maynard C.A.; Antimicrobial peptides. Food Preservation and Safety of Natural Products 2022,175-189
Ageitos J.M.; Sánchez-Pérez A.; Calo-Mata P.; Villa T.G.; Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 2017,133,117-138
[DOI: 10.1016/j.bcp.2016.09.018]
Wang G.; Li X.; Wang Z.; APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016,44(D1),D1087-D1093
[DOI: 10.1093/nar/gkv1278]
Lee J.; Lee D.G.; Antimicrobial peptides (AMPs) with dual mechanisms: Membrane disruption and apoptosis. J Microbiol Biotechnol 2015,25(6),759-764
[DOI: 10.4014/jmb.1411.11058]
Park Y.; Hahm K.S.; Antimicrobial peptides (AMPs): Peptide structure and mode of action. J Biochem Mol Biol 2005,38(5),507-516
[PMID: 16202228]
Bechinger B.; Gorr S.U.; Antimicrobial peptides: Mechanisms of action and resistance. J Dent Res 2017,96(3),254-260
[DOI: 10.1177/0022034516679973]
Thankappan B.; Jeyarajan S.; Hiroaki S.; Anbarasu K.; Natarajaseenivasan K.; Fujii N.; Antimicrobial and antibiofilm activity of designed and synthesized antimicrobial peptide, KABT-AMP. Appl Biochem Biotechnol 2013,170(5),1184-1193
[DOI: 10.1007/s12010-013-0258-3]
Chou H.T.; Kuo T.Y.; Chiang J.C.; Pei M.J.; Yang W.T.; Yu H.C.; Lin S.B.; Chen W.J.; Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents 2008,32(2),130-138
[DOI: 10.1016/j.ijantimicag.2008.04.003]
Lianbin L.I.; Chen X.; Research progress of antimicrobial peptides expression in Bacillus subtilis. China Feed 2015,20,11-17
Ajingi Y.S.; Rukying N.; Aroonsri A.; Jongruja N.; Recombinant active peptides and their therapeutic functions. Curr Pharm Biotechnol 2022,23(5),645-663
[DOI: 10.2174/1389201022666210702123934]
Li M.; Lu W.; Sun Y.; Dong C.; Antimicrobial peptides: Sources, expression systems, and applications. Curr Protein Pept Sci 2023,24(8),640-654
[DOI: 10.2174/1389203724666230727101636]
Feng X.; Liu C.; Guo J.; Song X.; Li J.; Xu W.; Li Z.; Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33. Appl Microbiol Biotechnol 2012,95(5),1191-1198
[DOI: 10.1007/s00253-011-3816-z]
Sampaio de Oliveira K.B.; Leite M.L.; Rodrigues G.R.; Duque H.M.; da Costa R.A.; Cunha V.A.; de Loiola Costa L.S.; da Cunha N.B.; Franco O.L.; Dias S.C.; Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020,13(4),367-390
[DOI: 10.1080/17512433.2020.1764347]
Sakhel; Jayanthi, Beatrice; Muhoza, Srinivas Simplification of the purification of heat stable recombinant low molecular weight proteins and peptides from GST-fusion products. J Chromatogr B 2021,1172(1),122627
Malesevic M.; Gardijan L.; Miljkovic M.; O’Connor P.M.; Mirkovic N.; Jovcic B.; Cotter P.D.; Jovanovic G.; Kojic M.; Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. Lett Appl Microbiol 2023,76(2),ovad004
[DOI: 10.1093/lambio/ovad004]
Ingham A.B.; Moore R.J.; Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem 2007,47(1),1-9
[DOI: 10.1042/BA20060207]
Simon M.D.; Pentelute B.L.; Adamo A.; Solid phase peptide synthesis processes and associated systems. US2021188899A1 2021
Erdem Büyükkiraz M.; Kesmen Z.; Recombinant expression and coexpression of oyster defensin and proline-rich peptide in Komagataella phaffii. Biotechnol Appl Biochem 2022,69(5),1998-2007
[DOI: 10.1002/bab.2262]
Arias M.; Hoffarth E.R.; Ishida H.; Aramini J.M.; Vogel H.J.; Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Biochim Biophys Acta Biomembr 2016,1858(5),1012-1023
[DOI: 10.1016/j.bbamem.2015.12.023]
Lamer T.; van Belkum M.J.; Vederas J.C.; Methods for recombinant production and purification of peptides as sumo-peptide-intein fusion proteins to protect from degradation. Curr Protoc 2022,2(10),e571
[DOI: 10.1002/cpz1.571]
Luan C.; Xie Y.G.; Pu Y.T.; Zhang H.W.; Han F.F.; Feng J.; Wang Y.Z.; Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli. Can J Microbiol 2014,60(3),113-120
[DOI: 10.1139/cjm-2013-0652]
Li Y.; Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin–SUMO dual fusion system. Protein Expr Purif 2013,87(2),72-78
[DOI: 10.1016/j.pep.2012.10.008]
Chen X.; Shi J.; Chen R.; Wen Y.; Shi Y.; Zhu Z.; Guo S.; Li L.; Molecular chaperones (TrxA, SUMO, Intein, and GST) mediating expression, purification, and antimicrobial activity assays of plectasin in Escherichia coli. Biotechnol Appl Biochem 2015,62(5),606-614
[DOI: 10.1002/bab.1303]
Satei P.; Ghaznavi-Rad E.; Fahimirad S.; Abtahi H.; Recombinant production of Trx-Ib-AMP4 and Trx-E50-52 antimicrobial peptides and antimicrobial synergistic assessment on the treatment of methicillin-resistant Staphylococcus aureus under in vitro and in vivo situations. Protein Expr Purif 2021,188,105949
[DOI: 10.1016/j.pep.2021.105949]
Cheng X.; Lu W.; Zhang S.; Cao P.; Expression and purification of antimicrobial peptide CM4 by Npro fusion technology in E. coli. Amino Acids 2010,39(5),1545-1552
[DOI: 10.1007/s00726-010-0625-0]
Lee J.H.; Kim J.H.; Hwang S.W.; Lee W.J.; Yoon H.K.; Lee H.S.; Hong S.S.; High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem Biophys Res Commun 2000,277(3),575-580
[DOI: 10.1006/bbrc.2000.3712]
Gardijan L.; Miljkovic M.; Obradovic M.; Borovic B.; Vukotic G.; Jovanovic G.; Kojic M.; Redesigned pMAL expression vector for easy and fast purification of active native antimicrobial peptides. J Appl Microbiol 2022,133(2),1001-1013
[DOI: 10.1111/jam.15623]
Walther C.; Mayer S.; Jungbauer A.; Dürauer A.; Getting ready for PAT: Scale up and inline monitoring of protein refolding of Npro fusion proteins. Process Biochem 2014,49(7),1113-1121
[DOI: 10.1016/j.procbio.2014.03.022]
Williams S.C.P.; Deisseroth K.; Optogenetics. Proc Natl Acad Sci USA 2013,110(41),16287-16287
[DOI: 10.1073/pnas.1317033110]
Lu X.; Shen Y.; Campbell R.E.; Engineering photosensory modules of non-opsin-based optogenetic actuators. Int J Mol Sci 2020,21(18),6522
[DOI: 10.3390/ijms21186522]
Shadish J.A.; Strange A.C.; DeForest C.A.; Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J Am Chem Soc 2019,141(39),15619-15625
[DOI: 10.1021/jacs.9b07239]
Xing Y.; Zeng B.; Yang W.; Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol 2022,10,1075670
[DOI: 10.3389/fbioe.2022.1075670]
Weissenberger S.; Schultheis C.; Liewald J.F.; Erbguth K.; Nagel G.; Gottschalk A.; PACα- an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 2011,116(4),616-625
[DOI: 10.1111/j.1471-4159.2010.07148.x]
Wu Y.I.; Frey D.; Lungu O.I.; Jaehrig A.; Schlichting I.; Kuhlman B.; Hahn K.M.; A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009,461(7260),104-108
[DOI: 10.1038/nature08241]
Friedman J.M.; How the discovery of microbial opsins led to the development of optogenetics. Cell 2021,184(22),5687-5689
[DOI: 10.1016/j.cell.2021.10.008]
Strickland D.; Lin Y.; Wagner E.; Hope C.M.; Zayner J.; Antoniou C.; Sosnick T.R.; Weiss E.L.; Glotzer M.; TULIPs: Ttunable, light-controlled interacting protein tags for cell biology. Nat Methods 2012,9(4),379-384
[DOI: 10.1038/nmeth.1904]
Fan L.; Zhou X.X.; Chavarha M.; Lin M.Z.; Improving optical control of protein activity by light-induced fluorescent protein dissociation. Biophys J 2014,106(2),382a
[DOI: 10.1016/j.bpj.2013.11.2162]
Zhang W.; Lohman A.W.; Zhuravlova Y.; Lu X.; Wiens M.D.; Hoi H.; Yaganoglu S.; Mohr M.A.; Kitova E.N.; Klassen J.S.; Pantazis P.; Thompson R.J.; Campbell R.E.; Optogenetic control with a photocleavable protein, PhoCl. Nat Methods 2017,14(4),391-394
[DOI: 10.1038/nmeth.4222]
Floyd N.; Oldham N.J.; Eyles C.J.; Taylor S.; Filatov D.A.; Brouard M.; Davis B.G.; Photoinduced, family-specific, site-selective cleavage of TIM-barrel proteins. J Am Chem Soc 2009,131(35),12518-12519
[DOI: 10.1021/ja9026105]
Mizuno H.; Mal T.K.; Tong K.I.; Ando R.; Furuta T.; Ikura M.; Miyawaki A.; Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 2003,12(4),1051-1058
[DOI: 10.1016/S1097-2765(03)00393-9]
Kumar C.V.; Buranaprapuk A.; Opiteck G.J.; Moyer M.B.; Jockusch S.; Turro N.J.; Photochemical protease: Site-specific photocleavage of hen egg lysozyme and bovine serum albumin. Proc Natl Acad Sci USA 1998,95(18),10361-10366
[DOI: 10.1073/pnas.95.18.10361]
Xiang D.; Wu X.; Cao W.; Xue B.; Qin M.; Cao Y.; Wang W.; Hydrogels with tunable mechanical properties based on photocleavable proteins. Front Chem 2020,8,7
[DOI: 10.3389/fchem.2020.00007]
Mohr M.A.; Argast P.; Pantazis P.; Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins. Nat Protoc 2016,11(12),2419-2431
[DOI: 10.1038/nprot.2016.134]
Zhang B.; Wang Y.; Huang S.; Sun J.; Wang M.; Ma W.; You Y.; Wu L.; Hu J.; Song W.; Liu X.; Li S.; Chen H.; Zhang G.; Zhang L.; Zhou D.; Li L.; Zhang X.; Photoswitchable CAR-T cell function in vitro and in vivo via a cleavable mediator. Cell Chem Biol 2021,28(1),60-69.e7
[DOI: 10.1016/j.chembiol.2020.10.004]
Brown W.; Albright S.; Tsang M.; Deiters A.; Optogenetic protein cleavage in zebrafish embryos**. ChemBioChem 2022,23(23),e202200297
[DOI: 10.1002/cbic.202200297]
Wongpanuwich W.; Yodsanga S.; Chaisuparat R.; Amornphimoltham P.; Association between PD-L1 and Histatin1, 3 expression in advanced head and neck squamous cell carcinoma. Anticancer Res 2022,42(5),2689-2699
[DOI: 10.21873/anticanres.15747]
Wu A.; Pathak J.L.; Li X.; Cao W.; Zhong W.; Zhu M.; Wu Q.; Chen W.; Han Q.; Jiang S.; Hei Y.; Zhang Z.; Wu G.; Zhang Q.; Human salivary Histatin-1 attenuates osteoarthritis through promoting M1/M2 macrophage transition. Pharmaceutics 2023,15(4),1272
[DOI: 10.3390/pharmaceutics15041272]
Wu C.L.; Chih Y.H.; Hsieh H.Y.; Peng K.L.; Lee Y.Z.; Yip B.S.; Sue S.C.; Cheng J.W.; High level expression and purification of cecropin-like antimicrobial peptides in Escherichia coli. Biomedicines 2022,10(6),1351
[DOI: 10.3390/biomedicines10061351]
Bobek L.A.; Tsai H.; Levine M.J.; Expression of human salivary histatin and cystatin/histatin chimeric cDNAs in Escherichia coli. Crit Rev Oral Biol Med 1993,4(3),581-590
[DOI: 10.1177/10454411930040034501]
Pritchard L.; Corne D.; Kell D.; Rowland J.; Winson M.; A general model of error-prone PCR. J Theor Biol 2005,234(4),497-509
[DOI: 10.1016/j.jtbi.2004.12.005]
Hu D.; Tateno H.; Hirabayashi J.; Directed evolution of lectins by an improved error-prone PCR and ribosome display method. Methods Mol Biol 2014,1200,527-538
[DOI: 10.1007/978-1-4939-1292-6_43]
Guzman L.M.; Belin D.; Carson M.J.; Beckwith J.; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995,177(14),4121-4130
[DOI: 10.1128/jb.177.14.4121-4130.1995]
Celińska E.; Ledesma-Amaro R.; Larroude M.; Rossignol T.; Pauthenier C.; Nicaud J.M.; Golden gate assembly system dedicated to complex pathway manipulation in yarrowia lipolytica. Microb Biotechnol 2017,10(2),450-455
[DOI: 10.1111/1751-7915.12605]
Baker C M; Atzori A .; AlphaFold: Deep learning, drug discovery and the protein structure revolution Chimia: Chemie report 2022,76(4),364-366
Rajalakshmi S.; Velvizhi S.; Maharajan A.; Ligand docking and binding site analysis with pymol and autodock in elimination of lymphatic filariasis. IJCR 2013,5(11),3393-3399
Eckert K.A.; Kunkel T.A.; DNA polymerase fidelity and the polymerase chain reaction. Genome Res 1991,1(1),17-24
[DOI: 10.1101/gr.1.1.17]
Froger A.; Hall J.E.; Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp 2007(6),253
[PMID: 18997900]
Winters D.; Tran M.; Yoo D.; Walker K.W.; Development of BioRad NGC and GE ÄKTA pure systems for highly automated three column protein purification employing tandem affinity, buffer exchange and size exclusion chromatography. Protein Expr Purif 2020,165,105497
[DOI: 10.1016/j.pep.2019.105497]
Laemmli U.K.; Laemmli U.K.; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970,227(5259),680-685
[DOI: 10.1038/227680a0]
Matsumoto H.; Haniu H.; Komori N.; Determination of protein molecular weights on SDS-PAGE. Methods Mol Biol 2019,1855,101-105
[DOI: 10.1007/978-1-4939-8793-1_10]
Brunelle J.L.; Green R.; One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 2014,541,151-159
[DOI: 10.1016/B978-0-12-420119-4.00012-4]
Du N.; Laing M.; Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of crude extracted insecticidal crystal proteins of Bacillus thuringiensis and Brevibacillus laterosporus. Afr J Biotechnol 2011,10(66),15094-15099
Josic D.; Kovac S.; Reversed-phase high performance liquid chromatography of proteins. Curr Protoc Protein Sci, 2010
[DOI: 10.1002/0471140864.ps0807s61]
EUCAST Version 11.0 Available from: https://eucast.org/2021
Balouiri M.; Sadiki M.; Ibnsouda S.K.; Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016,6(2),71-79
[DOI: 10.1016/j.jpha.2015.11.005]
Sharma M.; Bassi H.; Chauhan P.; Thakur P.; Chauhan A.; Kumar R.; Kollarigowda R.H.; Thakur N.K.; Inhibition of the bacterial growth as a consequence of synergism of Ag and ZnO: Calendula officinalis mediated green approach for nanoparticles and impact of altitude. Inorg Chem Commun 2022,136,109131
[DOI: 10.1016/j.inoche.2021.109131]
Hong E.; Lee H.M.; Ko H.; Kim D.U.; Jeon B.Y.; Jung J.; Shin J.; Lee S.A.; Kim Y.; Jeon Y.H.; Cheong C.; Cho H.S.; Lee W.; Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. J Biol Chem 2007,282(28),20667-20675
[DOI: 10.1074/jbc.M609104200]
Pollock J.J.; Denepitiya L.; MacKay B.J.; Iacono: Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides. Infect Immun 1984,44,702-707
[DOI: 10.1128/iai.44.3.702-707.1984]
Oppenheim F.G.; Xu T.; McMillian F.M.; Levitz S.M.; Diamond R.D.; Offner G.D.; Troxler R.F.; Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 1988,263(16),7472-7477
[DOI: 10.1016/S0021-9258(18)68522-9]
Meiyalaghan S.; Latimer J.M.; Kralicek A.V.; Shaw M.L.; Lewis J.G.; Conner A.J.; Barrell P.J.; Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res Notes 2014,7(1),777
[DOI: 10.1186/1756-0500-7-777]
Driscoll J.; Zuo Y.; Xu T.; Choi J.R.; Troxler R.F.; Oppenheim E.G.; Functional comparison of native and recombinant human salivary histatin 1. J Dent Res 1995,74(12),1837-1844
[DOI: 10.1177/00220345950740120601]
Arora S.; Saxena V.; Ayyar B.V.; Affinity chromatography: A versatile technique for antibody purification. Methods 2017,116,84-94
[DOI: 10.1016/j.ymeth.2016.12.010]
Cui T.; Gao Y.; Ang C.; Puah C.; Gutte B.; Lam Y.; Hydrogen peroxide enhances enterokinase-catalysed proteolytic cleavage of fusion protein. Recent Pat Biotechnol 2008,2(3),188-190
[DOI: 10.2174/187220808786240971]
Lin Z.; Zhao Q.; Zhou B.; Xing L.; Xu W.; Cleavable self-aggregating tags (cSAT) for protein expression and purification. Methods Mol Biol 2015,1258,65-78
[DOI: 10.1007/978-1-4939-2205-5_4]
Grants
Z191100001119045, No. 20220484146/Beijing Nova Program