Improving Photocleavage Efficiency of Photocleavable Protein for Antimicrobial Peptide Histatin 1 Expression.

Nana Zhou, Tai An, Yuan Zhang, Guomiao Zhao, Chao Wei, Xuemei Shen, Fan Li, Xiaoyan Wang
Author Information
  1. Nana Zhou: Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China.
  2. Tai An: Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China.
  3. Yuan Zhang: Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China.
  4. Guomiao Zhao: Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China.
  5. Chao Wei: Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China.
  6. Xuemei Shen: Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China.
  7. Fan Li: Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China.
  8. Xiaoyan Wang: Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China.

Abstract

BACKGROUND: Antimicrobial peptides (AMPs) are promising alternative agents for antibiotics to overcome antibiotic resistance problems. But, it is difficult to produce large-scale antimicrobial research due to the toxicity towards expression hosts or degradation by peptidases in the host. Therefore, heterologous recombinant expression of antimicrobial peptides has always been a challenging issue.
OBJECTIVES: To overcome toxicity to the expression host and low expression level, a new photocleavable protein fusion expression method for antimicrobial peptides is provided.3 Methods: Through directed evolution and high throughput screening, a photocleavable protein mutant R6-2-6-4 with a higher photocleavage efficiency was obtained. The DNA coding sequence of antimicrobial peptide Histatin 1 was fused within the sequence of R6-2-6-4 gene. The fusion gene was successfully expressed in expression system.
RESULTS: Antimicrobial peptide Histatin 1 could be successfully expressed and purified by fusing within PhoCl mutant R6-2-6-4. The antimicrobial activity was rarely affected, and the MIC value was 33 ug/mL, which was basically equivalent to 32 ug/mL of the chemically synthesized Histatin 1. After amplification in a 5 L fermenter, the expression of PhoCl mutant (R6-2-6-4)-Histatin1 improved up to 87.6 mg/L in fermenter, and Histatin1 obtained by photocleavage also could up to 11 mg/L. The prepared Histatin1 powder remained stable when stored at 4oC for up to 4 months without any degradation. In addition, the expression and photocleavage of β -Defensin105 and Lysostaphin verified the certain universality of the PhoCl mutant fusion expression system.
CONCLUSION: Antimicrobial peptides Histatin 1, β -Defensin 105 and Lysostaphin were successfully expressed and purified by photocleavable protein mutant. This may provide a novel strategy to express and purify antimicrobial peptides in the expression system.

Keywords

References

  1. Chatterjee A.; Modarai M.; Naylor N.R.; Boyd S.E.; Atun R.; Barlow J.; Holmes A.H.; Johnson A.; Robotham J.V.; Quantifying drivers of antibiotic resistance in humans: A systematic review. Lancet Infect Dis 2018,18(12),e368-e378 [DOI: 10.1016/S1473-3099(18)30296-2]
  2. Barton M.D.; Hart W.S.; Public health risks: Antibiotic resistance - review -. Asian-Australas J Anim Sci 2001,14(3),414-422 [DOI: 10.5713/ajas.2001.414]
  3. Ventola C L; The antibiotic resistance crisis: Part 1: Causes and threats P and T: A Peer Reviewed Journal for Formulary Management 2015,40(4),277-283
  4. Davies J.; Davies D.; Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010,74(3),417-433 [DOI: 10.1128/MMBR.00016-10]
  5. Carmeli Y.; Strategies for managing today’s infections. Clin Microbiol Infect 2008,14(s3)(Suppl. 3),22-31 [DOI: 10.1111/j.1469-0691.2008.01957.x]
  6. Randhawa G.; Sharma R.; Chemotherapeutic potential of cow urine: A review. J Intercult Ethnopharmacol 2015,4(2),180-186 [DOI: 10.5455/jice.20150222100320]
  7. Pacheco T.; Bustos R.H.; González D.; Garzón V.; García J.C.; Ramírez D.; An approach to measuring colistin plasma levels regarding the treatment of multidrug-resistant bacterial infection. Antibiotics 2019,8(3),100 [DOI: 10.3390/antibiotics8030100]
  8. Eltai N.O.; Al Thani A.A.; Al Hadidi S.H.; Al Ansari K.; Yassine H.M.; Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol 2020,20(1),54 [DOI: 10.1186/s12866-020-01732-8]
  9. Rima M.; Rima M.; Fajloun Z.; Sabatier J.M.; Bechinger B.; Naas T.; Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics 2021,10(9),1095 [DOI: 10.3390/antibiotics10091095]
  10. Zhang R.; Xu L.; Dong C.; Antimicrobial peptides: An overview of their structure, function and mechanism of action. Protein Pept Lett 2022,29(8),641-650 [DOI: 10.2174/0929866529666220613102145]
  11. Erdem Büyükkiraz M.; Kesmen Z.; Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J Appl Microbiol 2022,132(3),1573-1596 [DOI: 10.1111/jam.15314]
  12. Wang C.; Hong T.; Cui P.; Wang J.; Xia J.; Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 2021,175,113818 [DOI: 10.1016/j.addr.2021.05.028]
  13. Kang H.K.; Kim C.; Seo C.H.; Park Y.; The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J Microbiol 2017,55(1),1-12 [DOI: 10.1007/s12275-017-6452-1]
  14. Annunziato G.; Costantino G.; Antimicrobial peptides (AMPs): A patent review (2015–2020). Expert Opin Ther Pat 2020,30(12),931-947 [DOI: 10.1080/13543776.2020.1851679]
  15. Divyashree M.; Mani M.K.; Reddy D.; Kumavath R.; Ghosh P.; Azevedo V.; Barh D.; Clinical applications of antimicrobial peptides (AMPs): Where do we stand now? Protein Pept Lett 2020,27(2),120-134 [DOI: 10.2174/0929866526666190925152957]
  16. Powell W.A.; Maynard C.A.; Antimicrobial peptides. Food Preservation and Safety of Natural Products 2022,175-189
  17. Ageitos J.M.; Sánchez-Pérez A.; Calo-Mata P.; Villa T.G.; Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 2017,133,117-138 [DOI: 10.1016/j.bcp.2016.09.018]
  18. Wang G.; Li X.; Wang Z.; APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res 2016,44(D1),D1087-D1093 [DOI: 10.1093/nar/gkv1278]
  19. Lee J.; Lee D.G.; Antimicrobial peptides (AMPs) with dual mechanisms: Membrane disruption and apoptosis. J Microbiol Biotechnol 2015,25(6),759-764 [DOI: 10.4014/jmb.1411.11058]
  20. Park Y.; Hahm K.S.; Antimicrobial peptides (AMPs): Peptide structure and mode of action. J Biochem Mol Biol 2005,38(5),507-516 [PMID: 16202228]
  21. Bechinger B.; Gorr S.U.; Antimicrobial peptides: Mechanisms of action and resistance. J Dent Res 2017,96(3),254-260 [DOI: 10.1177/0022034516679973]
  22. Thankappan B.; Jeyarajan S.; Hiroaki S.; Anbarasu K.; Natarajaseenivasan K.; Fujii N.; Antimicrobial and antibiofilm activity of designed and synthesized antimicrobial peptide, KABT-AMP. Appl Biochem Biotechnol 2013,170(5),1184-1193 [DOI: 10.1007/s12010-013-0258-3]
  23. Chou H.T.; Kuo T.Y.; Chiang J.C.; Pei M.J.; Yang W.T.; Yu H.C.; Lin S.B.; Chen W.J.; Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents 2008,32(2),130-138 [DOI: 10.1016/j.ijantimicag.2008.04.003]
  24. Lianbin L.I.; Chen X.; Research progress of antimicrobial peptides expression in Bacillus subtilis. China Feed 2015,20,11-17
  25. Ajingi Y.S.; Rukying N.; Aroonsri A.; Jongruja N.; Recombinant active peptides and their therapeutic functions. Curr Pharm Biotechnol 2022,23(5),645-663 [DOI: 10.2174/1389201022666210702123934]
  26. Li M.; Lu W.; Sun Y.; Dong C.; Antimicrobial peptides: Sources, expression systems, and applications. Curr Protein Pept Sci 2023,24(8),640-654 [DOI: 10.2174/1389203724666230727101636]
  27. Feng X.; Liu C.; Guo J.; Song X.; Li J.; Xu W.; Li Z.; Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33. Appl Microbiol Biotechnol 2012,95(5),1191-1198 [DOI: 10.1007/s00253-011-3816-z]
  28. Sampaio de Oliveira K.B.; Leite M.L.; Rodrigues G.R.; Duque H.M.; da Costa R.A.; Cunha V.A.; de Loiola Costa L.S.; da Cunha N.B.; Franco O.L.; Dias S.C.; Strategies for recombinant production of antimicrobial peptides with pharmacological potential. Expert Rev Clin Pharmacol 2020,13(4),367-390 [DOI: 10.1080/17512433.2020.1764347]
  29. Sakhel; Jayanthi, Beatrice; Muhoza, Srinivas Simplification of the purification of heat stable recombinant low molecular weight proteins and peptides from GST-fusion products. J Chromatogr B 2021,1172(1),122627
  30. Malesevic M.; Gardijan L.; Miljkovic M.; O’Connor P.M.; Mirkovic N.; Jovcic B.; Cotter P.D.; Jovanovic G.; Kojic M.; Exploring the antibacterial potential of Lactococcus lactis subsp. lactis bv. diacetylactis BGBU1-4 by genome mining, bacteriocin gene overexpression, and chemical protein synthesis of lactolisterin BU variants. Lett Appl Microbiol 2023,76(2),ovad004 [DOI: 10.1093/lambio/ovad004]
  31. Ingham A.B.; Moore R.J.; Recombinant production of antimicrobial peptides in heterologous microbial systems. Biotechnol Appl Biochem 2007,47(1),1-9 [DOI: 10.1042/BA20060207]
  32. Simon M.D.; Pentelute B.L.; Adamo A.; Solid phase peptide synthesis processes and associated systems. US2021188899A1 2021
  33. Erdem Büyükkiraz M.; Kesmen Z.; Recombinant expression and coexpression of oyster defensin and proline-rich peptide in Komagataella phaffii. Biotechnol Appl Biochem 2022,69(5),1998-2007 [DOI: 10.1002/bab.2262]
  34. Arias M.; Hoffarth E.R.; Ishida H.; Aramini J.M.; Vogel H.J.; Recombinant expression, antimicrobial activity and mechanism of action of tritrpticin analogs containing fluoro-tryptophan residues. Biochim Biophys Acta Biomembr 2016,1858(5),1012-1023 [DOI: 10.1016/j.bbamem.2015.12.023]
  35. Lamer T.; van Belkum M.J.; Vederas J.C.; Methods for recombinant production and purification of peptides as sumo-peptide-intein fusion proteins to protect from degradation. Curr Protoc 2022,2(10),e571 [DOI: 10.1002/cpz1.571]
  36. Luan C.; Xie Y.G.; Pu Y.T.; Zhang H.W.; Han F.F.; Feng J.; Wang Y.Z.; Recombinant expression of antimicrobial peptides using a novel self-cleaving aggregation tag in Escherichia coli. Can J Microbiol 2014,60(3),113-120 [DOI: 10.1139/cjm-2013-0652]
  37. Li Y.; Production of human antimicrobial peptide LL-37 in Escherichia coli using a thioredoxin–SUMO dual fusion system. Protein Expr Purif 2013,87(2),72-78 [DOI: 10.1016/j.pep.2012.10.008]
  38. Chen X.; Shi J.; Chen R.; Wen Y.; Shi Y.; Zhu Z.; Guo S.; Li L.; Molecular chaperones (TrxA, SUMO, Intein, and GST) mediating expression, purification, and antimicrobial activity assays of plectasin in Escherichia coli. Biotechnol Appl Biochem 2015,62(5),606-614 [DOI: 10.1002/bab.1303]
  39. Satei P.; Ghaznavi-Rad E.; Fahimirad S.; Abtahi H.; Recombinant production of Trx-Ib-AMP4 and Trx-E50-52 antimicrobial peptides and antimicrobial synergistic assessment on the treatment of methicillin-resistant Staphylococcus aureus under in vitro and in vivo situations. Protein Expr Purif 2021,188,105949 [DOI: 10.1016/j.pep.2021.105949]
  40. Cheng X.; Lu W.; Zhang S.; Cao P.; Expression and purification of antimicrobial peptide CM4 by Npro fusion technology in E. coli. Amino Acids 2010,39(5),1545-1552 [DOI: 10.1007/s00726-010-0625-0]
  41. Lee J.H.; Kim J.H.; Hwang S.W.; Lee W.J.; Yoon H.K.; Lee H.S.; Hong S.S.; High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing formation of inclusion bodies. Biochem Biophys Res Commun 2000,277(3),575-580 [DOI: 10.1006/bbrc.2000.3712]
  42. Gardijan L.; Miljkovic M.; Obradovic M.; Borovic B.; Vukotic G.; Jovanovic G.; Kojic M.; Redesigned pMAL expression vector for easy and fast purification of active native antimicrobial peptides. J Appl Microbiol 2022,133(2),1001-1013 [DOI: 10.1111/jam.15623]
  43. Walther C.; Mayer S.; Jungbauer A.; Dürauer A.; Getting ready for PAT: Scale up and inline monitoring of protein refolding of Npro fusion proteins. Process Biochem 2014,49(7),1113-1121 [DOI: 10.1016/j.procbio.2014.03.022]
  44. Williams S.C.P.; Deisseroth K.; Optogenetics. Proc Natl Acad Sci USA 2013,110(41),16287-16287 [DOI: 10.1073/pnas.1317033110]
  45. Shirai F.; Hayashi-Takagi A.; Optogenetics: Applications in psychiatric research. Psychiatry Clin Neurosci 2017,71(6),363-372 [DOI: 10.1111/pcn.12516]
  46. Lu X.; Shen Y.; Campbell R.E.; Engineering photosensory modules of non-opsin-based optogenetic actuators. Int J Mol Sci 2020,21(18),6522 [DOI: 10.3390/ijms21186522]
  47. Shadish J.A.; Strange A.C.; DeForest C.A.; Genetically encoded photocleavable linkers for patterned protein release from biomaterials. J Am Chem Soc 2019,141(39),15619-15625 [DOI: 10.1021/jacs.9b07239]
  48. Xing Y.; Zeng B.; Yang W.; Light responsive hydrogels for controlled drug delivery. Front Bioeng Biotechnol 2022,10,1075670 [DOI: 10.3389/fbioe.2022.1075670]
  49. Weissenberger S.; Schultheis C.; Liewald J.F.; Erbguth K.; Nagel G.; Gottschalk A.; PACα- an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 2011,116(4),616-625 [DOI: 10.1111/j.1471-4159.2010.07148.x]
  50. Wu Y.I.; Frey D.; Lungu O.I.; Jaehrig A.; Schlichting I.; Kuhlman B.; Hahn K.M.; A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009,461(7260),104-108 [DOI: 10.1038/nature08241]
  51. Friedman J.M.; How the discovery of microbial opsins led to the development of optogenetics. Cell 2021,184(22),5687-5689 [DOI: 10.1016/j.cell.2021.10.008]
  52. Strickland D.; Lin Y.; Wagner E.; Hope C.M.; Zayner J.; Antoniou C.; Sosnick T.R.; Weiss E.L.; Glotzer M.; TULIPs: Ttunable, light-controlled interacting protein tags for cell biology. Nat Methods 2012,9(4),379-384 [DOI: 10.1038/nmeth.1904]
  53. Fan L.; Zhou X.X.; Chavarha M.; Lin M.Z.; Improving optical control of protein activity by light-induced fluorescent protein dissociation. Biophys J 2014,106(2),382a [DOI: 10.1016/j.bpj.2013.11.2162]
  54. Zhang W.; Lohman A.W.; Zhuravlova Y.; Lu X.; Wiens M.D.; Hoi H.; Yaganoglu S.; Mohr M.A.; Kitova E.N.; Klassen J.S.; Pantazis P.; Thompson R.J.; Campbell R.E.; Optogenetic control with a photocleavable protein, PhoCl. Nat Methods 2017,14(4),391-394 [DOI: 10.1038/nmeth.4222]
  55. Floyd N.; Oldham N.J.; Eyles C.J.; Taylor S.; Filatov D.A.; Brouard M.; Davis B.G.; Photoinduced, family-specific, site-selective cleavage of TIM-barrel proteins. J Am Chem Soc 2009,131(35),12518-12519 [DOI: 10.1021/ja9026105]
  56. Mizuno H.; Mal T.K.; Tong K.I.; Ando R.; Furuta T.; Ikura M.; Miyawaki A.; Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 2003,12(4),1051-1058 [DOI: 10.1016/S1097-2765(03)00393-9]
  57. Kumar C.V.; Buranaprapuk A.; Opiteck G.J.; Moyer M.B.; Jockusch S.; Turro N.J.; Photochemical protease: Site-specific photocleavage of hen egg lysozyme and bovine serum albumin. Proc Natl Acad Sci USA 1998,95(18),10361-10366 [DOI: 10.1073/pnas.95.18.10361]
  58. Xiang D.; Wu X.; Cao W.; Xue B.; Qin M.; Cao Y.; Wang W.; Hydrogels with tunable mechanical properties based on photocleavable proteins. Front Chem 2020,8,7 [DOI: 10.3389/fchem.2020.00007]
  59. Mohr M.A.; Argast P.; Pantazis P.; Labeling cellular structures in vivo using confined primed conversion of photoconvertible fluorescent proteins. Nat Protoc 2016,11(12),2419-2431 [DOI: 10.1038/nprot.2016.134]
  60. Zhang B.; Wang Y.; Huang S.; Sun J.; Wang M.; Ma W.; You Y.; Wu L.; Hu J.; Song W.; Liu X.; Li S.; Chen H.; Zhang G.; Zhang L.; Zhou D.; Li L.; Zhang X.; Photoswitchable CAR-T cell function in vitro and in vivo via a cleavable mediator. Cell Chem Biol 2021,28(1),60-69.e7 [DOI: 10.1016/j.chembiol.2020.10.004]
  61. Brown W.; Albright S.; Tsang M.; Deiters A.; Optogenetic protein cleavage in zebrafish embryos**. ChemBioChem 2022,23(23),e202200297 [DOI: 10.1002/cbic.202200297]
  62. Wongpanuwich W.; Yodsanga S.; Chaisuparat R.; Amornphimoltham P.; Association between PD-L1 and Histatin1, 3 expression in advanced head and neck squamous cell carcinoma. Anticancer Res 2022,42(5),2689-2699 [DOI: 10.21873/anticanres.15747]
  63. Wu A.; Pathak J.L.; Li X.; Cao W.; Zhong W.; Zhu M.; Wu Q.; Chen W.; Han Q.; Jiang S.; Hei Y.; Zhang Z.; Wu G.; Zhang Q.; Human salivary Histatin-1 attenuates osteoarthritis through promoting M1/M2 macrophage transition. Pharmaceutics 2023,15(4),1272 [DOI: 10.3390/pharmaceutics15041272]
  64. Wu C.L.; Chih Y.H.; Hsieh H.Y.; Peng K.L.; Lee Y.Z.; Yip B.S.; Sue S.C.; Cheng J.W.; High level expression and purification of cecropin-like antimicrobial peptides in Escherichia coli. Biomedicines 2022,10(6),1351 [DOI: 10.3390/biomedicines10061351]
  65. Bobek L.A.; Tsai H.; Levine M.J.; Expression of human salivary histatin and cystatin/histatin chimeric cDNAs in Escherichia coli. Crit Rev Oral Biol Med 1993,4(3),581-590 [DOI: 10.1177/10454411930040034501]
  66. Pritchard L.; Corne D.; Kell D.; Rowland J.; Winson M.; A general model of error-prone PCR. J Theor Biol 2005,234(4),497-509 [DOI: 10.1016/j.jtbi.2004.12.005]
  67. Hu D.; Tateno H.; Hirabayashi J.; Directed evolution of lectins by an improved error-prone PCR and ribosome display method. Methods Mol Biol 2014,1200,527-538 [DOI: 10.1007/978-1-4939-1292-6_43]
  68. Guzman L.M.; Belin D.; Carson M.J.; Beckwith J.; Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995,177(14),4121-4130 [DOI: 10.1128/jb.177.14.4121-4130.1995]
  69. Celińska E.; Ledesma-Amaro R.; Larroude M.; Rossignol T.; Pauthenier C.; Nicaud J.M.; Golden gate assembly system dedicated to complex pathway manipulation in yarrowia lipolytica. Microb Biotechnol 2017,10(2),450-455 [DOI: 10.1111/1751-7915.12605]
  70. Baker C M; Atzori A .; AlphaFold: Deep learning, drug discovery and the protein structure revolution Chimia: Chemie report 2022,76(4),364-366
  71. Rajalakshmi S.; Velvizhi S.; Maharajan A.; Ligand docking and binding site analysis with pymol and autodock in elimination of lymphatic filariasis. IJCR 2013,5(11),3393-3399
  72. Eckert K.A.; Kunkel T.A.; DNA polymerase fidelity and the polymerase chain reaction. Genome Res 1991,1(1),17-24 [DOI: 10.1101/gr.1.1.17]
  73. Kowalczykowski S.C.; Dixon D.A.; Eggleston A.K.; Lauder S.D.; Rehrauer W.M.; Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994,58(3),401-465 [DOI: 10.1128/mr.58.3.401-465.1994]
  74. Froger A.; Hall J.E.; Transformation of plasmid DNA into E. coli using the heat shock method. J Vis Exp 2007(6),253 [PMID: 18997900]
  75. Winters D.; Tran M.; Yoo D.; Walker K.W.; Development of BioRad NGC and GE ÄKTA pure systems for highly automated three column protein purification employing tandem affinity, buffer exchange and size exclusion chromatography. Protein Expr Purif 2020,165,105497 [DOI: 10.1016/j.pep.2019.105497]
  76. Laemmli U.K.; Laemmli U.K.; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970,227(5259),680-685 [DOI: 10.1038/227680a0]
  77. Matsumoto H.; Haniu H.; Komori N.; Determination of protein molecular weights on SDS-PAGE. Methods Mol Biol 2019,1855,101-105 [DOI: 10.1007/978-1-4939-8793-1_10]
  78. Brunelle J.L.; Green R.; One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 2014,541,151-159 [DOI: 10.1016/B978-0-12-420119-4.00012-4]
  79. Du N.; Laing M.; Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of crude extracted insecticidal crystal proteins of Bacillus thuringiensis and Brevibacillus laterosporus. Afr J Biotechnol 2011,10(66),15094-15099
  80. Josic D.; Kovac S.; Reversed-phase high performance liquid chromatography of proteins. Curr Protoc Protein Sci, 2010 [DOI: 10.1002/0471140864.ps0807s61]
  81. EUCAST Version 11.0 Available from: https://eucast.org/2021
  82. Balouiri M.; Sadiki M.; Ibnsouda S.K.; Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016,6(2),71-79 [DOI: 10.1016/j.jpha.2015.11.005]
  83. Sharma M.; Bassi H.; Chauhan P.; Thakur P.; Chauhan A.; Kumar R.; Kollarigowda R.H.; Thakur N.K.; Inhibition of the bacterial growth as a consequence of synergism of Ag and ZnO: Calendula officinalis mediated green approach for nanoparticles and impact of altitude. Inorg Chem Commun 2022,136,109131 [DOI: 10.1016/j.inoche.2021.109131]
  84. Hong E.; Lee H.M.; Ko H.; Kim D.U.; Jeon B.Y.; Jung J.; Shin J.; Lee S.A.; Kim Y.; Jeon Y.H.; Cheong C.; Cho H.S.; Lee W.; Structure of an atypical orphan response regulator protein supports a new phosphorylation-independent regulatory mechanism. J Biol Chem 2007,282(28),20667-20675 [DOI: 10.1074/jbc.M609104200]
  85. Pollock J.J.; Denepitiya L.; MacKay B.J.; Iacono: Fungistatic and fungicidal activity of human parotid salivary histidine-rich polypeptides. Infect Immun 1984,44,702-707 [DOI: 10.1128/iai.44.3.702-707.1984]
  86. Oppenheim F.G.; Xu T.; McMillian F.M.; Levitz S.M.; Diamond R.D.; Offner G.D.; Troxler R.F.; Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 1988,263(16),7472-7477 [DOI: 10.1016/S0021-9258(18)68522-9]
  87. Meiyalaghan S.; Latimer J.M.; Kralicek A.V.; Shaw M.L.; Lewis J.G.; Conner A.J.; Barrell P.J.; Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies. BMC Res Notes 2014,7(1),777 [DOI: 10.1186/1756-0500-7-777]
  88. Driscoll J.; Zuo Y.; Xu T.; Choi J.R.; Troxler R.F.; Oppenheim E.G.; Functional comparison of native and recombinant human salivary histatin 1. J Dent Res 1995,74(12),1837-1844 [DOI: 10.1177/00220345950740120601]
  89. Arora S.; Saxena V.; Ayyar B.V.; Affinity chromatography: A versatile technique for antibody purification. Methods 2017,116,84-94 [DOI: 10.1016/j.ymeth.2016.12.010]
  90. Cui T.; Gao Y.; Ang C.; Puah C.; Gutte B.; Lam Y.; Hydrogen peroxide enhances enterokinase-catalysed proteolytic cleavage of fusion protein. Recent Pat Biotechnol 2008,2(3),188-190 [DOI: 10.2174/187220808786240971]
  91. Lin Z.; Zhao Q.; Zhou B.; Xing L.; Xu W.; Cleavable self-aggregating tags (cSAT) for protein expression and purification. Methods Mol Biol 2015,1258,65-78 [DOI: 10.1007/978-1-4939-2205-5_4]

Grants

  1. Z191100001119045, No. 20220484146/Beijing Nova Program

MeSH Term

Histatins
Escherichia coli
Recombinant Fusion Proteins
Microbial Sensitivity Tests
Antimicrobial Peptides
Antimicrobial Cationic Peptides
Humans

Chemicals

Histatins
Recombinant Fusion Proteins
Antimicrobial Peptides
Antimicrobial Cationic Peptides

Word Cloud

Created with Highcharts 10.0.0expressionantimicrobialpeptidesmutantHistatin1AntimicrobialproteinR6-2-6-4photocleavagephotocleavablefusionsuccessfullyexpressedsystemPhoClovercometoxicitydegradationhostdirectedevolutionhighthroughputscreeningobtainedsequencepeptidewithingenepurifiedactivityug/mLfermentermg/LHistatin1βLysostaphinPhotocleavableBACKGROUND:AMPspromisingalternativeagentsantibioticsantibioticresistanceproblemsdifficultproducelarge-scaleresearchduetowardshostspeptidasesThereforeheterologousrecombinantalwayschallengingissueOBJECTIVES:lowlevelnewmethodprovided3Methods:higherefficiencyDNAcodingfusedRESULTS:fusingrarelyaffectedMICvalue33basicallyequivalent32chemicallysynthesizedamplification5L-Histatin1improved876also11preparedpowderremainedstablestored4oC4monthswithoutaddition-Defensin105verifiedcertainuniversalityCONCLUSION:-Defensin105mayprovidenovelstrategyexpresspurifyImprovingPhotocleavageEfficiencyProteinPeptideExpression

Similar Articles

Cited By