The count: an identity-based intervention to counter partisan misinformation sharing.

Clara Pretus, Ali M Javeed, Diána Hughes, Kobi Hackenburg, Manos Tsakiris, Oscar Vilarroya, Jay J Van Bavel
Author Information
  1. Clara Pretus: Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain. ORCID
  2. Ali M Javeed: Department of Psychology and Center for Neural Science, New York University, New York, NY 10003, USA.
  3. Diána Hughes: Department of Psychology and Center for Neural Science, New York University, New York, NY 10003, USA.
  4. Kobi Hackenburg: Centre for the Politics of Feelings, School of Advanced Study, Royal Holloway, University of London, London WC1E 7HU, UK.
  5. Manos Tsakiris: Centre for the Politics of Feelings, School of Advanced Study, Royal Holloway, University of London, London WC1E 7HU, UK. ORCID
  6. Oscar Vilarroya: Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
  7. Jay J Van Bavel: Department of Psychology and Center for Neural Science, New York University, New York, NY 10003, USA. ORCID

Abstract

Interventions to counter misinformation are often less effective for polarizing content on social media platforms. We sought to overcome this limitation by testing an identity-based intervention, which aims to promote accuracy by incorporating normative cues directly into the social media user interface. Across three pre-registered experiments in the US ( = 1709) and UK ( = 804), we found that crowdsourcing accuracy judgements by adding a count (next to the count) reduced participants' reported likelihood to share inaccurate information about partisan issues by 25% (compared with a control condition). The count was also more effective when it reflected in-group norms (from fellow Democrats/Republicans) compared with the norms of general users, though this effect was absent in a less politically polarized context (UK). Moreover, the normative intervention was roughly five times as effective as another popular misinformation intervention (i.e. the accuracy nudge reduced sharing misinformation by 5%). Extreme partisanship did not undermine the effectiveness of the intervention. Our results suggest that identity-based interventions based on the science of social norms can be more effective than identity-neutral alternatives to counter partisan misinformation in politically polarized contexts (e.g. the US). This article is part of the theme issue 'Social norm change: drivers and consequences'.

Keywords

References

  1. Sci Adv. 2019 Jan 09;5(1):eaau4586 [PMID: 30662946]
  2. Trends Cogn Sci. 2018 Mar;22(3):213-224 [PMID: 29475636]
  3. PLoS One. 2020 Feb 10;15(2):e0228882 [PMID: 32040539]
  4. Psychol Sci. 2020 Jul;31(7):770-780 [PMID: 32603243]
  5. Philos Trans R Soc Lond B Biol Sci. 2021 Apr 12;376(1822):20200143 [PMID: 33612003]
  6. Nat Hum Behav. 2023 Sep;7(9):1514-1525 [PMID: 37322236]
  7. Nat Commun. 2022 Apr 28;13(1):2333 [PMID: 35484277]
  8. Comput Brain Behav. 2022;5(2):244-260 [PMID: 35578705]
  9. Eur J Soc Psychol. 2022 Jun;52(4):772-781 [PMID: 35942292]
  10. Philos Trans R Soc Lond B Biol Sci. 2024 Mar 11;379(1897):20230040 [PMID: 38244594]
  11. R Soc Open Sci. 2019 Jun 12;6(6):181585 [PMID: 31312469]
  12. Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2521-2526 [PMID: 30692252]
  13. Science. 2020 Oct 30;370(6516):533-536 [PMID: 33122374]
  14. Ann N Y Acad Sci. 2013 Sep;1299:11-24 [PMID: 25708077]
  15. Nat Med. 2022 Mar;28(3):460-467 [PMID: 35273402]
  16. Science. 2018 Mar 9;359(6380):1146-1151 [PMID: 29590045]
  17. J Exp Psychol Gen. 2023 Nov;152(11):3116-3134 [PMID: 37347911]
  18. J Pers Soc Psychol. 2009 May;96(5):995-1011 [PMID: 19379032]
  19. Cognition. 2019 Jul;188:39-50 [PMID: 29935897]
  20. Science. 2019 Jan 25;363(6425):374-378 [PMID: 30679368]
  21. Psychol Bull. 2003 May;129(3):339-75 [PMID: 12784934]
  22. Trends Cogn Sci. 2003 Jul;7(7):320-324 [PMID: 12860191]
  23. Br J Soc Psychol. 1990 Jun;29 ( Pt 2):97-119 [PMID: 2372667]
  24. Sci Adv. 2021 Jun 2;7(23): [PMID: 34078599]
  25. Psychol Sci. 2021 Jul;32(7):1169-1178 [PMID: 34114521]

MeSH Term

Humans
Cues
Judgment
Probability
Social Norms
Communication

Word Cloud

Created with Highcharts 10.0.0misinformationsocialinterventioneffectivenormscountermediaidentity-basedaccuracycountpartisanlessnormativeUS=UKreducedcomparedpoliticallypolarizedesharingInterventionsoftenpolarizingcontentplatformssoughtovercomelimitationtestingaimspromoteincorporatingcuesdirectlyuserinterfaceAcrossthreepre-registeredexperiments1709804foundcrowdsourcingjudgementsaddingnextparticipants'reportedlikelihoodshareinaccurateinformationissues25%controlconditionalsoreflectedin-groupfellowDemocrats/RepublicansgeneralusersthougheffectabsentcontextMoreoverroughlyfivetimesanotherpopularinudge5%Extremepartisanshipundermineeffectivenessresultssuggestinterventionsbasedsciencecanidentity-neutralalternativescontextsgarticlepartthemeissue'Socialnormchange:driversconsequences'count:identity

Similar Articles

Cited By