The Multifaceted Role of Cofilin in Neurodegeneration and Stroke: Insights into Pathogenesis and Targeting as a Therapy.

Faheem Shehjar, Daniyah A Almarghalani, Reetika Mahajan, Syed A-M Hasan, Zahoor A Shah
Author Information
  1. Faheem Shehjar: Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA.
  2. Daniyah A Almarghalani: Stroke Research Unit, Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
  3. Reetika Mahajan: Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA.
  4. Syed A-M Hasan: Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
  5. Zahoor A Shah: Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA. ORCID

Abstract

This comprehensive review explores the complex role of cofilin, an actin-binding protein, across various neurodegenerative diseases (Alzheimer's, Parkinson's, schizophrenia, amyotrophic lateral sclerosis (ALS), Huntington's) and stroke. Cofilin is an essential protein in cytoskeletal dynamics, and any dysregulation could lead to potentially serious complications. Cofilin's involvement is underscored by its impact on pathological hallmarks like A�� plaques and ��-synuclein aggregates, triggering synaptic dysfunction, dendritic spine loss, and impaired neuronal plasticity, leading to cognitive decline. In Parkinson's disease, cofilin collaborates with ��-synuclein, exacerbating neurotoxicity and impairing mitochondrial and axonal function. ALS and frontotemporal dementia showcase cofilin's association with genetic factors like C9ORF72, affecting actin dynamics and contributing to neurotoxicity. Huntington's disease brings cofilin into focus by impairing microglial migration and influencing synaptic plasticity through AMPA receptor regulation. Alzheimer's, Parkinson's, and schizophrenia exhibit 14-3-3 proteins in cofilin dysregulation as a shared pathological mechanism. In the case of stroke, cofilin takes center stage, mediating neurotoxicity and neuronal cell death. Notably, there is a potential overlap in the pathologies and involvement of cofilin in various diseases. In this context, referencing cofilin dysfunction could provide valuable insights into the common pathologies associated with the aforementioned conditions. Moreover, this review explores promising therapeutic interventions, including cofilin inhibitors and gene therapy, demonstrating efficacy in preclinical models. Challenges in inhibitor development, brain delivery, tissue/cell specificity, and long-term safety are acknowledged, emphasizing the need for precision drug therapy. The call to action involves collaborative research, biomarker identification, and advancing translational efforts. Cofilin emerges as a pivotal player, offering potential as a therapeutic target. However, unraveling its complexities requires concerted multidisciplinary efforts for nuanced and effective interventions across the intricate landscape of neurodegenerative diseases and stroke, presenting a hopeful avenue for improved patient care.

Keywords

References

  1. Nat Neurosci. 2010 Oct;13(10):1208-15 [PMID: 20835250]
  2. J Neuroinflammation. 2019 Jul 10;16(1):142 [PMID: 31291966]
  3. Nat Commun. 2022 Oct 13;13(1):6037 [PMID: 36229429]
  4. Front Cell Dev Biol. 2021 Mar 11;9:634347 [PMID: 33777942]
  5. Cell Death Differ. 2014 Dec;21(12):1971-83 [PMID: 25124556]
  6. J Alzheimers Dis. 2016 Jun 28;53(4):1419-32 [PMID: 27372643]
  7. Trends Cell Biol. 2010 Apr;20(4):187-95 [PMID: 20133134]
  8. J Clin Invest. 2012 Dec;122(12):4737-47 [PMID: 23160193]
  9. Cold Spring Harb Perspect Biol. 2011 Mar 01;3(3): [PMID: 21106647]
  10. Nat Commun. 2018 May 10;9(1):1860 [PMID: 29749375]
  11. Mol Neurobiol. 2016 Mar;53(2):867-878 [PMID: 25526862]
  12. Biochem J. 2008 Sep 1;414(2):261-70 [PMID: 18494608]
  13. J Neurosci. 2014 Jul 9;34(28):9455-72 [PMID: 25009276]
  14. Hum Mol Genet. 2018 Sep 1;27(17):3060-3078 [PMID: 29878125]
  15. Nat Commun. 2022 Apr 19;13(1):2114 [PMID: 35440100]
  16. Ann Neurol. 2017 Sep;82(3):429-443 [PMID: 28843047]
  17. Front Cell Dev Biol. 2021 Feb 04;9:599065 [PMID: 33614640]
  18. Neurotherapeutics. 2023 Jul;20(4):1177-1197 [PMID: 37208551]
  19. Am J Physiol Renal Physiol. 2006 Jun;290(6):F1398-407 [PMID: 16434575]
  20. Sci Rep. 2017 Mar 17;7:44506 [PMID: 28303963]
  21. J Neuroimmunol. 2017 Dec 15;313:46-55 [PMID: 29153608]
  22. Cell. 2020 Apr 2;181(1):151-167 [PMID: 32243788]
  23. Int J Mol Sci. 2021 Oct 03;22(19): [PMID: 34639067]
  24. Arterioscler Thromb Vasc Biol. 2011 Nov;31(11):2424-31 [PMID: 21868701]
  25. ACS Chem Neurosci. 2022 Apr 6;13(7):1014-1029 [PMID: 35302736]
  26. Cells. 2021 Aug 13;10(8): [PMID: 34440848]
  27. Nat Commun. 2023 Sep 14;14(1):5688 [PMID: 37709794]
  28. Int J Mol Sci. 2023 Feb 22;24(5): [PMID: 36901765]
  29. Mediators Inflamm. 2021 May 31;2021:9999146 [PMID: 34158806]
  30. EMBO J. 2018 Mar 15;37(6): [PMID: 29496740]
  31. Mol Cell Proteomics. 2011 Jun;10(6):M110.000042 [PMID: 21421798]
  32. Mini Rev Med Chem. 2020;20(9):754-767 [PMID: 31686637]
  33. Biol Psychiatry. 2015 Sep 15;78(6):386-95 [PMID: 25863357]
  34. Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1478-1484 [PMID: 31900364]
  35. FEBS Lett. 1980 Nov 17;121(1):178-82 [PMID: 6893966]
  36. Neurology. 2023 Jul 11;101(2):e137-e150 [PMID: 37197995]
  37. Trends Neurosci. 2016 May;39(5):311-324 [PMID: 27040729]
  38. Bioarchitecture. 2012 May 1;2(3):75-87 [PMID: 22880146]
  39. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):E5150-9 [PMID: 26324884]
  40. Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16072-7 [PMID: 16247020]
  41. Gene. 2022 Apr 20;819:146206 [PMID: 35092861]
  42. Yonago Acta Med. 2018 Jun 18;61(2):91-102 [PMID: 29946215]
  43. J Biol Chem. 2004 Feb 6;279(6):4840-8 [PMID: 14627701]
  44. Brain Sci. 2021 Jul 20;11(7): [PMID: 34356188]
  45. Mol Cell Neurosci. 2017 Oct;84:4-10 [PMID: 28268126]
  46. Curr Alzheimer Res. 2010 May;7(3):241-50 [PMID: 20088812]
  47. Commun Biol. 2019 Mar 22;2:112 [PMID: 30911686]
  48. J Biol Chem. 2015 Nov 27;290(48):28613-22 [PMID: 26453304]
  49. Front Neurol. 2020 Oct 30;11:554089 [PMID: 33192987]
  50. EMBO J. 2010 Jun 2;29(11):1889-902 [PMID: 20407421]
  51. Int J Mol Sci. 2022 Feb 06;23(3): [PMID: 35163773]
  52. Front Med Technol. 2022 Jun 24;4:748949 [PMID: 35813155]
  53. Nat Neurosci. 2016 Dec;19(12):1610-1618 [PMID: 27723745]
  54. Front Pharmacol. 2019 Sep 12;10:1008 [PMID: 31572186]
  55. Front Cell Dev Biol. 2021 Nov 17;9:742310 [PMID: 34869330]
  56. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14436-41 [PMID: 18780792]
  57. Annu Rev Neurosci. 2009;32:383-412 [PMID: 19400716]
  58. Respir Res. 2017 Apr 8;18(1):54 [PMID: 28390425]
  59. Nat Commun. 2019 Nov 22;10(1):5320 [PMID: 31757941]
  60. Elife. 2017 Mar 10;6: [PMID: 28282023]
  61. Front Mol Neurosci. 2022 Apr 19;15:883358 [PMID: 35514431]
  62. J Cell Biol. 2016 Feb 15;212(4):449-63 [PMID: 26880202]
  63. Cell Rep. 2019 Oct 1;29(1):49-61.e7 [PMID: 31577955]
  64. Mol Neurodegener. 2022 Mar 21;17(1):23 [PMID: 35313950]
  65. J Cereb Blood Flow Metab. 2020 Dec;40(1_suppl):S25-S33 [PMID: 33086921]
  66. Dev Growth Differ. 2015 May;57(4):275-90 [PMID: 25864508]
  67. CNS Neurol Disord Drug Targets. 2017;16(3):279-290 [PMID: 28124604]
  68. Nat Med. 2019 Dec;25(12):1822-1832 [PMID: 31806905]
  69. J Pharm Biomed Anal. 2023 Mar 20;226:115258 [PMID: 36709658]
  70. Int J Cell Biol. 2012;2012:320531 [PMID: 22190940]
  71. J Cell Biol. 2007 Sep 24;178(7):1251-64 [PMID: 17875745]
  72. Front Cell Dev Biol. 2020 Nov 26;8:584898 [PMID: 33324642]
  73. Arch Biochem Biophys. 2020 Mar 30;682:108280 [PMID: 31996302]
  74. Annu Rev Cell Dev Biol. 1999;15:185-230 [PMID: 10611961]
  75. Neuroscientist. 2019 Feb;25(1):27-47 [PMID: 29716431]
  76. Neurology. 2020 May 5;94(18):e1908-e1915 [PMID: 32265233]
  77. Int J Mol Sci. 2023 Sep 22;24(19): [PMID: 37833867]
  78. J Cell Biol. 2007 May 7;177(3):465-76 [PMID: 17470633]
  79. Cell Mol Life Sci. 2022 Oct 20;79(11):558 [PMID: 36264429]
  80. Gene Ther. 2023 Feb;30(1-2):1-7 [PMID: 34754099]
  81. Biochemistry. 1984 Oct 23;23(22):5307-13 [PMID: 6509022]
  82. EMBO J. 1999 Dec 1;18(23):6752-61 [PMID: 10581248]
  83. Biomedicines. 2022 Feb 03;10(2): [PMID: 35203580]
  84. J Neurochem. 2014 Apr;129(2):221-34 [PMID: 24164353]
  85. Biochemistry. 2019 Jan 8;58(1):40-47 [PMID: 30499293]
  86. Acta Neuropathol. 2019 Jun;137(6):859-877 [PMID: 30721407]
  87. Curr Neuropharmacol. 2020;18(12):1187-1212 [PMID: 32484111]
  88. Neurochem Int. 2023 Jan;162:105458 [PMID: 36460240]
  89. Neuroimage Clin. 2020;26:102211 [PMID: 32113174]
  90. Elife. 2021 Jun 25;10: [PMID: 34169836]
  91. Neural Plast. 2016;2016:3025948 [PMID: 26989514]
  92. Front Cell Dev Biol. 2020 Nov 12;8:594998 [PMID: 33282872]
  93. J Clin Invest. 2020 Jun 1;130(6):2777-2788 [PMID: 32391806]
  94. Exp Neurol. 2021 Jan;335:113518 [PMID: 33144066]
  95. Brain Pathol. 2019 May;29(3):425-436 [PMID: 30368965]
  96. J Biol Chem. 2012 Feb 3;287(6):3919-29 [PMID: 22184127]
  97. Signal Transduct Target Ther. 2023 Jul 12;8(1):267 [PMID: 37433768]
  98. Acta Neuropathol. 2022 Feb;143(2):179-224 [PMID: 34853891]
  99. J Proteome Res. 2016 May 6;15(5):1702-16 [PMID: 27018876]
  100. Immunol Rev. 2013 Nov;256(1):30-47 [PMID: 24117811]
  101. J Med Chem. 2012 Feb 23;55(4):1424-44 [PMID: 22239221]
  102. Biochim Biophys Acta Mol Cell Res. 2019 Mar;1866(3):418-429 [PMID: 30296500]
  103. Crit Rev Microbiol. 2020 Aug;46(4):381-396 [PMID: 32715819]
  104. Cell Rep. 2023 Feb 28;42(2):112138 [PMID: 36807141]
  105. Cell Rep. 2022 Aug 30;40(9):111261 [PMID: 36044862]
  106. Cell Motil Cytoskeleton. 2006 Sep;63(9):533-42 [PMID: 16847879]
  107. Cells. 2023 Apr 13;12(8): [PMID: 37190062]
  108. PLoS One. 2018 Dec 14;13(12):e0208979 [PMID: 30550596]
  109. Nat Neurosci. 2001 Nov;4(11):1086-92 [PMID: 11687814]
  110. Clin Interv Aging. 2020 Mar 23;15:469-484 [PMID: 32273689]
  111. Neuropathol Appl Neurobiol. 2016 Feb;42(1):77-94 [PMID: 26613567]
  112. Dialogues Clin Neurosci. 2006;8(1):59-70 [PMID: 16640115]
  113. Neural Regen Res. 2020 Aug;15(8):1451-1459 [PMID: 31997804]
  114. Neuroscience. 2018 Jul 15;383:33-45 [PMID: 29746992]
  115. Stroke. 2021 Apr;52(4):1182-1184 [PMID: 33626902]
  116. Cells. 2021 Oct 12;10(10): [PMID: 34685706]
  117. Adv Neurobiol. 2011;5:201-234 [PMID: 35547659]
  118. J Cereb Blood Flow Metab. 2019 Nov;39(11):2181-2195 [PMID: 29932353]
  119. J Neurosci. 2009 Oct 14;29(41):12994-3005 [PMID: 19828813]
  120. Prion. 2014;8(6):375-80 [PMID: 25426519]
  121. Biochem Biophys Res Commun. 2020 Sep 3;529(4):1053-1060 [PMID: 32819564]
  122. Curr Biol. 2017 Jul 10;27(13):1956-1967.e7 [PMID: 28625781]
  123. Neurol Clin. 2015 Feb;33(1):1-17 [PMID: 25432720]
  124. Transl Stroke Res. 2016 Feb;7(1):33-41 [PMID: 26670926]
  125. Cell Signal. 2013 Feb;25(2):457-69 [PMID: 23153585]
  126. Immune Netw. 2012 Apr;12(2):41-7 [PMID: 22740789]
  127. Biology (Basel). 2023 Apr 21;12(4): [PMID: 37106830]
  128. Neuroscience. 2020 Sep 15;444:64-75 [PMID: 32697981]
  129. Cytoskeleton (Hoboken). 2016 Sep;73(9):477-97 [PMID: 26873625]
  130. Neurocrit Care. 2022 Apr;36(2):492-503 [PMID: 34462880]
  131. Front Immunol. 2019 Sep 11;10:2167 [PMID: 31572378]
  132. Am J Cancer Res. 2021 Sep 15;11(9):4050-4069 [PMID: 34659876]
  133. Neural Regen Res. 2021 Jan;16(1):80-92 [PMID: 32788451]
  134. Stroke. 2022 May;53(5):1460-1472 [PMID: 35380050]
  135. Mol Cell Neurosci. 2018 Sep;91:122-130 [PMID: 30004015]
  136. Front Cell Neurosci. 2022 Sep 22;16:982074 [PMID: 36212686]
  137. Stroke. 2022 May;53(5):1473-1486 [PMID: 35387495]
  138. Comput Struct Biotechnol J. 2022 Aug 04;20:4157-4171 [PMID: 36016710]
  139. Immunology. 2018 Jul;154(3):363-376 [PMID: 29494762]
  140. Trends Immunol. 2020 Sep;41(9):805-819 [PMID: 32800705]
  141. Front Physiol. 2023 Sep 08;14:1213668 [PMID: 37745245]
  142. J Cell Mol Med. 2022 Jun;26(12):3460-3470 [PMID: 35579089]
  143. Cells. 2020 Feb 04;9(2): [PMID: 32033020]
  144. J Alzheimers Dis. 2019;72(s1):S131-S144 [PMID: 31594228]
  145. Cell Death Dis. 2021 Oct 16;12(11):953 [PMID: 34657120]
  146. Biophys J. 2008 Mar 15;94(6):2082-94 [PMID: 18065447]
  147. Int J Mol Sci. 2021 Dec 03;22(23): [PMID: 34884906]
  148. NPJ Parkinsons Dis. 2022 Jan 10;8(1):1 [PMID: 35013321]
  149. Mol Neurobiol. 2018 Feb;55(2):1676-1691 [PMID: 28194647]
  150. Neurol Res Pract. 2020 Jun 16;2:17 [PMID: 33324923]
  151. Heliyon. 2023 Jul 06;9(7):e17986 [PMID: 37519706]

Grants

  1. R01 NS112642/NINDS NIH HHS
  2. R01NS112642/NINDS NIH HHS

MeSH Term

Humans
Actin Depolymerizing Factors
alpha-Synuclein
Alzheimer Disease
Amyotrophic Lateral Sclerosis
Parkinson Disease
Stroke

Chemicals

Actin Depolymerizing Factors
alpha-Synuclein

Word Cloud

Created with Highcharts 10.0.0cofilindiseasesneurodegenerativeParkinson'sstrokeCofilinneurotoxicityreviewexploresproteinacrossvariousAlzheimer'sschizophreniaALSHuntington'sdynamicsdysregulationinvolvementpathologicallike��-synucleinsynapticdysfunctionneuronalplasticitydiseaseimpairingpotentialpathologiestherapeuticinterventionstherapyeffortscomprehensivecomplexroleactin-bindingamyotrophiclateralsclerosisessentialcytoskeletalleadpotentiallyseriouscomplicationsCofilin'sunderscoredimpacthallmarksA��plaquesaggregatestriggeringdendriticspinelossimpairedleadingcognitivedeclinecollaboratesexacerbatingmitochondrialaxonalfunctionfrontotemporaldementiashowcasecofilin'sassociationgeneticfactorsC9ORF72affectingactincontributingbringsfocusmicroglialmigrationinfluencingAMPAreceptorregulationexhibit14-3-3proteinssharedmechanismcasetakescenterstagemediatingcelldeathNotablyoverlapcontextreferencingprovidevaluableinsightscommonassociatedaforementionedconditionsMoreoverpromisingincludinginhibitorsgenedemonstratingefficacypreclinicalmodelsChallengesinhibitordevelopmentbraindeliverytissue/cellspecificitylong-termsafetyacknowledgedemphasizingneedprecisiondrugcallactioninvolvescollaborativeresearchbiomarkeridentificationadvancingtranslationalemergespivotalplayerofferingtargetHoweverunravelingcomplexitiesrequiresconcertedmultidisciplinarynuancedeffectiveintricatelandscapepresentinghopefulavenueimprovedpatientcareMultifacetedRoleNeurodegenerationStroke:InsightsPathogenesisTargetingTherapyinhibitionsignalingneuroinflammation

Similar Articles

Cited By (4)