Toward the Relational Formulation of Biological Thermodynamics.

Abir U Igamberdiev
Author Information
  1. Abir U Igamberdiev: Department of Biology, Memorial University of Newfoundland, St John's, NL A1C 5S7, Canada. ORCID

Abstract

Classical thermodynamics employs the state of thermodynamic equilibrium, characterized by maximal disorder of the constituent particles, as the reference frame from which the Second Law is formulated and the definition of entropy is derived. Non-equilibrium thermodynamics analyzes the fluxes of matter and energy that are generated in the course of the general tendency to achieve equilibrium. The systems described by classical and non-equilibrium thermodynamics may be heuristically useful within certain limits, but epistemologically, they have fundamental problems in the application to autopoietic living systems. We discuss here the paradigm defined as a relational biological thermodynamics. The standard to which this refers relates to the biological function operating within the context of particular environment and not to the abstract state of thermodynamic equilibrium. This is defined as the stable non-equilibrium state, following Ervin Bauer. Similar to physics, where abandoning the absolute space-time resulted in the application of non-Euclidean geometry, relational biological thermodynamics leads to revealing the basic iterative structures that are formed as a consequence of the search for an optimal coordinate system by living organisms to maintain stable non-equilibrium. Through this search, the developing system achieves the condition of maximization of its power via synergistic effects.

Keywords

References

  1. Biosystems. 2016 Jan;139:1-11 [PMID: 26545937]
  2. Prog Biophys Mol Biol. 2017 Nov;130(Pt A):15-25 [PMID: 28232245]
  3. Biosystems. 2022 Feb;212:104593 [PMID: 34973355]
  4. Entropy (Basel). 2020 Jul 25;22(8): [PMID: 33286586]
  5. Biochim Biophys Acta. 1999 Aug 4;1412(3):191-211 [PMID: 10482783]
  6. Entropy (Basel). 2021 Mar 29;23(4): [PMID: 33805411]
  7. Biosystems. 2021 Sep;207:104454 [PMID: 34126191]
  8. Entropy (Basel). 2021 Aug 12;23(8): [PMID: 34441179]
  9. Biochemistry (Mosc). 2008 Apr;73(4):479-82 [PMID: 18457579]
  10. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13168-73 [PMID: 15340153]
  11. Curr Aging Sci. 2014;7(1):60-75 [PMID: 24852018]
  12. Biophys Chem. 2021 Apr;271:106550 [PMID: 33517028]
  13. Biosystems. 2004 Nov;77(1-3):47-56 [PMID: 15527945]
  14. Biosystems. 2023 Feb;224:104837 [PMID: 36649884]
  15. Interface Focus. 2023 Apr 14;13(3):20220063 [PMID: 37065266]
  16. Biosystems. 2024 Jan;235:105090 [PMID: 38008155]
  17. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Oct;86(4 Pt 1):040106 [PMID: 23214518]
  18. Biosystems. 2007 Sep-Oct;90(2):340-9 [PMID: 17095146]
  19. Ann N Y Acad Sci. 1974;231(1):99-105 [PMID: 4522899]
  20. Prog Biophys Mol Biol. 2020 Dec;158:57-65 [PMID: 32976913]
  21. Biosystems. 2022 Apr;214:104630 [PMID: 35104614]
  22. Biosystems. 2000 Feb;55(1-3):39-46 [PMID: 10745107]
  23. Science. 1980 Aug 1;209(4456):547-57 [PMID: 17756820]
  24. Entropy (Basel). 2022 Apr 15;24(4): [PMID: 35455217]
  25. Nat Commun. 2015 Jul 07;6:7669 [PMID: 26151678]
  26. J Biotechnol. 1997 Dec 17;59(1-2):25-37 [PMID: 9487716]
  27. Biosystems. 2019 Oct;184:104013 [PMID: 31394152]
  28. Bioorg Chem. 2007 Dec;35(6):430-43 [PMID: 17897696]
  29. Biosemiotics. 2016 Apr;9(1):103-129 [PMID: 27525048]
  30. Biosystems. 2023 Aug;230:104957 [PMID: 37327847]
  31. Wilhelm Roux Arch Entwickl Mech Org. 1927 Nov;112(1):433-454 [PMID: 28354690]
  32. Biosystems. 2021 Jun;204:104395 [PMID: 33640396]
  33. Biosystems. 2022 Oct;220:104718 [PMID: 35803502]
  34. Zh Obshch Biol. 1985 Jul-Aug;46(4):471-82 [PMID: 3901580]
  35. Biosystems. 2014 Sep;123:19-26 [PMID: 24690545]
  36. Comput Chem. 1996 Mar;20(1):95-100 [PMID: 16749183]
  37. Biosystems. 1999 Jul;51(1):15-9 [PMID: 10426469]
  38. Biosystems. 1995;35(2-3):209-12 [PMID: 7488718]
  39. Entropy (Basel). 2022 Sep 28;24(10): [PMID: 37420403]
  40. Q Rev Biophys. 1978 Aug;11(3):251-308 [PMID: 223188]
  41. Biosystems. 2012 Sep;109(3):299-313 [PMID: 22579975]
  42. J Theor Biol. 1971 Jan;30(1):1-34 [PMID: 5555272]
  43. J Theor Biol. 1967 Dec;17(3):410-20 [PMID: 5586520]
  44. Curr Mod Biol. 1974 May;5(4):187-96 [PMID: 4407425]
  45. Prog Biophys Mol Biol. 2012 Jan;108(1-2):1-46 [PMID: 21951575]
  46. Proc Natl Acad Sci U S A. 2022 Feb 8;119(6): [PMID: 35131858]
  47. Biosystems. 2001 Apr-May;60(1-3):5-21 [PMID: 11325500]
  48. Entropy (Basel). 2023 Aug 07;25(8): [PMID: 37628203]
  49. Ann N Y Acad Sci. 1962 Mar 2;96:1105-16 [PMID: 14038609]
  50. Science. 1950 Jan 13;111(2872):23-9 [PMID: 15398815]
  51. Evol Dev. 2000 Sep-Oct;2(5):241-8 [PMID: 11252553]
  52. Biosystems. 2023 Dec;234:105044 [PMID: 37783374]
  53. Bioessays. 2009 Oct;31(10):1091-9 [PMID: 19708023]
  54. Biosystems. 1993;31(1):65-73 [PMID: 8286707]
  55. Phys Life Rev. 2014 Mar;11(1):39-78 [PMID: 24070914]
  56. Biosystems. 1979 Aug;11(2-3):111-24 [PMID: 497364]
  57. Biosystems. 2022 Mar;213:104634 [PMID: 35114348]
  58. Am J Physiol. 1978 Sep;235(3):R99-114 [PMID: 696856]
  59. Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032105 [PMID: 24125212]
  60. Q Rev Biol. 2013 Jun;88(2):69-96 [PMID: 23909225]
  61. Biosystems. 2024 Jan;235:105089 [PMID: 38000544]
  62. Proc Natl Acad Sci U S A. 1922 Jun;8(6):147-51 [PMID: 16576642]
  63. Bull Math Biol. 1977;39(6):663-78 [PMID: 922219]
  64. AIMS Neurosci. 2019 May 24;6(2):85-103 [PMID: 32341970]
  65. Biosystems. 2018 Nov;173:174-180 [PMID: 30291885]
  66. Biosystems. 2020 Feb;188:104063 [PMID: 31715221]
  67. Biosystems. 2020 Jun;193-194:104131 [PMID: 32224105]

Word Cloud

Created with Highcharts 10.0.0thermodynamicsnon-equilibriumbiologicalstateequilibriumrelationalstablethermodynamicsystemswithinapplicationlivingdefinedsearchsystemClassicalemployscharacterizedmaximaldisorderconstituentparticlesreferenceframeSecondLawformulateddefinitionentropyderivedNon-equilibriumanalyzesfluxesmatterenergygeneratedcoursegeneraltendencyachievedescribedclassicalmayheuristicallyusefulcertainlimitsepistemologicallyfundamentalproblemsautopoieticdiscussparadigmstandardrefersrelatesfunctionoperatingcontextparticularenvironmentabstractfollowingErvinBauerSimilarphysicsabandoningabsolutespace-timeresultednon-EuclideangeometryleadsrevealingbasiciterativestructuresformedconsequenceoptimalcoordinateorganismsmaintaindevelopingachievesconditionmaximizationpowerviasynergisticeffectsTowardRelationalFormulationBiologicalThermodynamicsattractorautopoiesiskineticperfectionbiology

Similar Articles

Cited By (1)