Advances in bacteriophage-mediated strategies for combating polymicrobial biofilms.

Marta Gliźniewicz, Dominika Miłek, Patrycja Olszewska, Artur Czajkowski, Natalia Serwin, Elżbieta Cecerska-Heryć, Barbara Dołęgowska, Bartłomiej Grygorcewicz
Author Information
  1. Marta Gliźniewicz: Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland.
  2. Dominika Miłek: Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland.
  3. Patrycja Olszewska: Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland.
  4. Artur Czajkowski: Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland.
  5. Natalia Serwin: Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland.
  6. Elżbieta Cecerska-Heryć: Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland.
  7. Barbara Dołęgowska: Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland.
  8. Bartłomiej Grygorcewicz: Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland.

Abstract

Bacteria and fungi tend to coexist within biofilms instead of in planktonic states. Usually, such communities include cross-kingdom microorganisms, which make them harder to remove from abiotic surfaces or infection sites. Additionally, the produced biofilm matrix protects embedded microorganisms from antibiotics, disinfectants, or the host immune system. Therefore, classic therapies based on antibiotics might be ineffective, especially when multidrug-resistant bacteria are causative factors. The complexities surrounding the eradication of biofilms from diverse surfaces and the human body have spurred the exploration of alternative therapeutic modalities. Among these options, bacteriophages and their enzymatic counterparts have emerged as promising candidates, either employed independently or in synergy with antibiotics and other agents. Phages are natural bacteria killers because of mechanisms of action that differ from antibiotics, phages might answer worldwide problems with bacterial infections. In this review, we report the attempts to use bacteriophages in combating polymicrobial biofilms in studies, using different models, including the therapeutical use of phages. In addition, we sum up the advantages, disadvantages, and perspectives of phage therapy.

Keywords

References

  1. Arch Microbiol. 2022 Sep 3;204(10):597 [PMID: 36056994]
  2. Sci Rep. 2016 May 26;6:26717 [PMID: 27225966]
  3. Antibiotics (Basel). 2022 Dec 01;11(12): [PMID: 36551388]
  4. Antibiotics (Basel). 2021 Feb 10;10(2): [PMID: 33578658]
  5. Antibiotics (Basel). 2021 Jul 07;10(7): [PMID: 34356747]
  6. J Appl Microbiol. 2022 Oct;133(4):2107-2121 [PMID: 34932868]
  7. Pharmacotherapy. 2020 Feb;40(2):153-168 [PMID: 31872889]
  8. Antibiotics (Basel). 2021 Jun 05;10(6): [PMID: 34198741]
  9. BMC Genomics. 2015 Apr 08;16:271 [PMID: 25887960]
  10. Viruses. 2020 Jan 13;12(1): [PMID: 31941083]
  11. Microb Drug Resist. 2022 Jun;28(6):613-622 [PMID: 35404123]
  12. Microb Biotechnol. 2023 Jul;16(7):1423-1437 [PMID: 37042412]
  13. J Appl Microbiol. 2014 Sep;117(3):627-33 [PMID: 24916438]
  14. Commun Biol. 2019 Nov 4;2:405 [PMID: 31701033]
  15. Pharmaceuticals (Basel). 2023 Apr 10;16(4): [PMID: 37111322]
  16. Antimicrob Agents Chemother. 2006 Apr;50(4):1268-75 [PMID: 16569839]
  17. Biofilm. 2023 Aug 02;6:100147 [PMID: 37662851]
  18. J Dent. 2008 Nov;36(11):965-8 [PMID: 18778883]
  19. J Intern Med. 2014 Aug;276(2):120-9 [PMID: 24635559]
  20. Clin Microbiol Infect. 2013 Feb;19(2):107-12 [PMID: 22925473]
  21. Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4629-34 [PMID: 19255432]
  22. Phage (New Rochelle). 2020 Sep 1;1(3):158-165 [PMID: 36147826]
  23. Int J Mol Sci. 2018 Jun 07;19(6): [PMID: 29880781]
  24. Viruses. 2021 Sep 22;13(10): [PMID: 34696328]
  25. Sci Rep. 2024 Apr 23;14(1):9354 [PMID: 38653744]
  26. Viruses. 2021 Sep 11;13(9): [PMID: 34578390]
  27. J Chin Med Assoc. 2018 Jan;81(1):7-11 [PMID: 29042186]
  28. NPJ Biofilms Microbiomes. 2022 Apr 19;8(1):29 [PMID: 35440653]
  29. Microsc Res Tech. 2021 Jul;84(7):1513-1521 [PMID: 33470479]
  30. Int J Mol Sci. 2022 Jan 24;23(3): [PMID: 35163197]
  31. Curr Med Chem. 2019;26(11):1979-1993 [PMID: 30207213]
  32. Crit Rev Microbiol. 2017 Nov;43(6):651-667 [PMID: 28358585]
  33. Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):E6166-E6175 [PMID: 28696303]
  34. Nat Rev Microbiol. 2017 Dec;15(12):740-755 [PMID: 28944770]
  35. Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10771-6 [PMID: 23690590]
  36. PLoS One. 2019 Jan 16;14(1):e0209390 [PMID: 30650088]
  37. Microorganisms. 2021 Mar 10;9(3): [PMID: 33801971]
  38. Antibiotics (Basel). 2023 Feb 01;12(2): [PMID: 36830196]
  39. Molecules. 2009 Jul 13;14(7):2535-54 [PMID: 19633622]
  40. Environ Sci Technol. 2017 May 2;51(9):5270-5278 [PMID: 28414441]
  41. Antimicrob Agents Chemother. 2015 Feb;59(2):1127-37 [PMID: 25487795]
  42. Front Microbiol. 2016 Aug 31;7:1366 [PMID: 27630624]
  43. Sci Rep. 2019 Apr 30;9(1):6643 [PMID: 31040333]
  44. FEMS Immunol Med Microbiol. 2010 Aug;59(3):269-79 [PMID: 20618850]
  45. Pathogens. 2021 Jan 08;10(1): [PMID: 33435575]
  46. Appl Environ Microbiol. 2015 May 15;81(10):3336-48 [PMID: 25746992]
  47. Nat Microbiol. 2018 Jan;3(1):26-31 [PMID: 29085075]
  48. Biofilm. 2022 Dec 29;5:100101 [PMID: 36655001]
  49. Front Microbiol. 2016 Jun 28;7:1024 [PMID: 27446059]
  50. Biofouling. 2019 Apr;35(4):472-481 [PMID: 31144513]
  51. Biofouling. 2013;29(10):1169-80 [PMID: 24063626]
  52. Pathogens. 2021 Feb 20;10(2): [PMID: 33672615]
  53. Pathogens. 2016 Nov 30;5(4): [PMID: 27916925]
  54. Virulence. 2018 Jan 1;9(1):522-554 [PMID: 28362216]
  55. Environ Microbiol. 2012 Aug;14(8):1844-54 [PMID: 22118225]
  56. Antimicrob Agents Chemother. 2004 Oct;48(10):3817-22 [PMID: 15388440]
  57. Viruses. 2020 May 18;12(5): [PMID: 32443619]
  58. Ann Clin Microbiol Antimicrob. 2021 Apr 26;20(1):30 [PMID: 33902597]
  59. Biofouling. 2010 Jul;26(5):567-75 [PMID: 20544433]
  60. Postepy Hig Med Dosw (Online). 2010 Nov 25;64:582-9 [PMID: 21109710]
  61. Antimicrob Agents Chemother. 2017 Jun 27;61(7): [PMID: 28461319]
  62. Appl Environ Microbiol. 2017 Jan 17;83(3): [PMID: 27836851]
  63. Antibiotics (Basel). 2019 Jul 25;8(3): [PMID: 31349628]
  64. Front Pharmacol. 2021 Jun 10;12:692614 [PMID: 34177601]
  65. Microb Pathog. 2017 Aug;109:4-7 [PMID: 28506884]
  66. Clin Microbiol Rev. 2012 Jan;25(1):193-213 [PMID: 22232376]
  67. BMC Oral Health. 2021 Apr 7;21(1):177 [PMID: 33827540]
  68. Appl Environ Microbiol. 2011 Feb;77(3):821-9 [PMID: 21131510]
  69. Methods Mol Biol. 2018;1693:151-158 [PMID: 29119439]
  70. Appl Environ Microbiol. 2014 Sep;80(17):5340-8 [PMID: 24951790]
  71. Front Microbiol. 2020 Apr 15;11:695 [PMID: 32351494]
  72. Microbiology (Reading). 2015 Jul;161(7):1369-77 [PMID: 25922418]
  73. Front Cell Infect Microbiol. 2022 Feb 18;12:836379 [PMID: 35252039]
  74. Appl Environ Microbiol. 2012 Feb;78(3):744-51 [PMID: 22113912]
  75. AIMS Microbiol. 2020 Feb 26;6(1):43-63 [PMID: 32226914]
  76. Curr Med Chem. 2015;22(14):1757-73 [PMID: 25666799]
  77. Viruses. 2019 Sep 23;11(10): [PMID: 31548497]
  78. J Mycol Med. 2020 Apr;30(1):100909 [PMID: 31771904]
  79. Microorganisms. 2019 Oct 18;7(10): [PMID: 31635437]
  80. Front Microbiol. 2021 May 12;12:676458 [PMID: 34054785]
  81. Curr Issues Mol Biol. 2022 Mar 17;44(3):1316-1325 [PMID: 35723311]
  82. PLoS One. 2017 Jan 11;12(1):e0168615 [PMID: 28076361]
  83. Antibiotics (Basel). 2022 Sep 27;11(10): [PMID: 36289968]
  84. Viruses. 2018 Dec 28;11(1): [PMID: 30597868]
  85. Trends Microbiol. 2003 Feb;11(2):94-100 [PMID: 12598132]
  86. EcoSal Plus. 2020 Oct;9(1): [PMID: 33118486]
  87. Microbiology (Reading). 2020 Jan;166(1):34-43 [PMID: 31585061]
  88. Front Bioeng Biotechnol. 2022 Mar 09;10:795871 [PMID: 35356781]
  89. Front Microbiol. 2018 Jul 31;9:1725 [PMID: 30108574]
  90. PLoS One. 2007 Aug 29;2(8):e799 [PMID: 17726529]
  91. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11197-202 [PMID: 17592147]
  92. Microb Pathog. 2019 Feb;127:21-30 [PMID: 30502515]
  93. PLoS Biol. 2022 Dec 22;20(12):e3001913 [PMID: 36548227]
  94. Microbiology (Reading). 2017 Nov;163(11):1568-1577 [PMID: 28982395]
  95. Antibiotics (Basel). 2020 May 05;9(5): [PMID: 32380707]
  96. Antibiotics (Basel). 2022 Apr 22;11(5): [PMID: 35625202]
  97. Dent J (Basel). 2021 Jun 10;9(6): [PMID: 34200637]
  98. J Biotechnol. 2017 May 20;250:29-44 [PMID: 28108235]
  99. Microbiol Spectr. 2022 Jun 29;10(3):e0277721 [PMID: 35435739]
  100. Nanotechnol Sci Appl. 2021 Sep 14;14:161-177 [PMID: 34548785]
  101. FEMS Immunol Med Microbiol. 2010 Aug;59(3):447-55 [PMID: 20528927]
  102. Clin Infect Dis. 2019 Nov 13;69(11):2015-2018 [PMID: 30869755]
  103. J Appl Microbiol. 2012 Dec;113(6):1530-9 [PMID: 22985454]
  104. PLoS Pathog. 2018 Oct 25;14(10):e1007310 [PMID: 30359456]
  105. Viruses. 2021 Dec 02;13(12): [PMID: 34960683]
  106. Sci Rep. 2019 Dec 3;9(1):18183 [PMID: 31796870]
  107. Microorganisms. 2023 Sep 20;11(9): [PMID: 37764196]
  108. Curr Opin Microbiol. 2017 Oct;39:48-56 [PMID: 28964986]

Word Cloud

Created with Highcharts 10.0.0biofilmsantibioticspolymicrobialmicroorganismssurfacesbiofilmmightbacteriabacteriophagessynergyphagesinfectionsusecombatingphagetherapyBacteriafungitendcoexistwithininsteadplanktonicstatesUsuallycommunitiesincludecross-kingdommakeharderremoveabioticinfectionsitesAdditionallyproducedmatrixprotectsembeddeddisinfectantshostimmunesystemThereforeclassictherapiesbasedineffectiveespeciallymultidrug-resistantcausativefactorscomplexitiessurroundingeradicationdiversehumanbodyspurredexplorationalternativetherapeuticmodalitiesAmongoptionsenzymaticcounterpartsemergedpromisingcandidateseitheremployedindependentlyagentsPhagesnaturalkillersmechanismsactiondifferanswerworldwideproblemsbacterialreviewreportattemptsstudiesusingdifferentmodelsincludingtherapeuticaladditionsumadvantagesdisadvantagesperspectivesAdvancesbacteriophage-mediatedstrategiesdepolymerasesmulti-speciesphage-antibiotic

Similar Articles

Cited By