The glymphatic system for neurosurgeons: a scoping review.

Mohammad Al Masri, Alba Corell, Isak Micha��lsson, Asgeir S Jakola, Thomas Skoglund
Author Information
  1. Mohammad Al Masri: Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
  2. Alba Corell: Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ORCID
  3. Isak Micha��lsson: Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ORCID
  4. Asgeir S Jakola: Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. ORCID
  5. Thomas Skoglund: Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. thomas.skoglund@gu.se. ORCID

Abstract

The discovery of the glymphatic system has revolutionized our understanding of cerebrospinal fluid (CSF) circulation and interstitial waste clearance in the brain. This scoping review aims to synthesize the current literature on the glymphatic system's role in neurosurgical conditions and its potential as a therapeutic target. We conducted a comprehensive search in PubMed and Scopus databases for studies published between January 1, 2012, and October 31, 2023. Studies were selected based on their relevance to neurosurgical conditions and glymphatic function, with both animal and human studies included. Data extraction focused on the methods for quantifying glymphatic function and the main results. A total of 67 articles were included, covering conditions such as idiopathic normal pressure hydrocephalus (iNPH), idiopathic intracranial hypertension (IIH), subarachnoid hemorrhage (SAH), stroke, intracranial tumors, and traumatic brain injury (TBI). Significant glymphatic dysregulation was noted in iNPH and IIH, with evidence of impaired CSF dynamics and delayed clearance. SAH studies indicated glymphatic dysfunction with the potential therapeutic effects of nimodipine and tissue plasminogen activator. In stroke, alterations in glymphatic activity correlated with the extent of edema and neurological recovery. TBI studies highlighted the role of the glymphatic system in post-injury cognitive outcomes. Results indicate that the regulation of aquaporin-4 (AQP4) channels is a critical target for therapeutic intervention. The glymphatic system plays a critical role in the pathophysiology of various neurosurgical conditions, influencing brain edema and CSF dynamics. Targeting the regulation of AQP4 channels presents as a significant therapeutic strategy. Although promising, the translation of these findings into clinical practice requires further human studies. Future research should focus on establishing non-invasive biomarkers for glymphatic function and exploring the long-term effects of glymphatic dysfunction.

Keywords

References

  1. Brain Sci. 2020 Nov 17;10(11): [PMID: 33212927]
  2. Medicine (Baltimore). 2023 Jan 6;102(1):e32639 [PMID: 36607854]
  3. Front Neurosci. 2021 Apr 22;15:674898 [PMID: 33967688]
  4. AJNR Am J Neuroradiol. 2021 Dec;42(12):2160-2164 [PMID: 34824096]
  5. Front Immunol. 2022 May 03;13:870029 [PMID: 35592320]
  6. Neurology. 2023 Jul 4;101(1):e63-e73 [PMID: 37156615]
  7. Front Pharmacol. 2022 Dec 13;13:1053253 [PMID: 36582539]
  8. BMC Vet Res. 2021 Jul 20;17(1):250 [PMID: 34284779]
  9. Cell Death Dis. 2016 Mar 31;7:e2160 [PMID: 27031957]
  10. J Magn Reson Imaging. 2024 Feb;59(2):639-647 [PMID: 37276070]
  11. Clin Neuroradiol. 2022 Mar;32(1):79-87 [PMID: 34618170]
  12. J Neurotrauma. 2021 Sep 1;38(17):2391-2399 [PMID: 33599176]
  13. Stroke. 2017 Aug;48(8):2301-2305 [PMID: 28526764]
  14. Neurotherapeutics. 2020 Oct;17(4):1954-1972 [PMID: 32918234]
  15. Front Neurosci. 2022 Oct 06;16:997743 [PMID: 36278004]
  16. J Cereb Blood Flow Metab. 2022 Dec;42(12):2287-2302 [PMID: 35962479]
  17. J Cereb Blood Flow Metab. 2019 Jul;39(7):1355-1368 [PMID: 29485341]
  18. Neurol Res Pract. 2021 Jan 19;3(1):5 [PMID: 33499944]
  19. Neuroradiology. 2023 Mar;65(3):551-557 [PMID: 36274107]
  20. Front Cell Neurosci. 2021 Dec 17;15:784154 [PMID: 34975411]
  21. World Neurosurg. 2021 Apr;148:e252-e263 [PMID: 33412318]
  22. J Neurosurg. 2023 Sep 08;140(3):612-620 [PMID: 37724800]
  23. Sci Transl Med. 2012 Aug 15;4(147):147ra111 [PMID: 22896675]
  24. J Stroke Cerebrovasc Dis. 2020 Jul;29(7):104828 [PMID: 32404284]
  25. Front Med (Lausanne). 2023 Aug 04;10:1189614 [PMID: 37601793]
  26. Front Neurol. 2022 Oct 20;13:957055 [PMID: 36341130]
  27. iScience. 2022 Aug 20;25(9):104987 [PMID: 36093063]
  28. Brain Behav. 2023 Jul;13(7):e3062 [PMID: 37161559]
  29. Front Oncol. 2021 Oct 13;11:725354 [PMID: 34722268]
  30. Brain Res. 2020 Nov 15;1747:147062 [PMID: 32818526]
  31. Science. 2023 Jan 6;379(6627):84-88 [PMID: 36603070]
  32. Front Neurol. 2022 Jul 01;13:924080 [PMID: 35847203]
  33. Glia. 2019 Jan;67(1):91-100 [PMID: 30306658]
  34. Front Neurol. 2023 May 12;14:1148878 [PMID: 37251219]
  35. Curr Gerontol Geriatr Res. 2019 Jun 20;2019:5675014 [PMID: 31320896]
  36. Invest Ophthalmol Vis Sci. 2020 Nov 2;61(13):24 [PMID: 33201186]
  37. J Neurosci. 2014 Dec 3;34(49):16180-93 [PMID: 25471560]
  38. Exp Neurobiol. 2019 Feb;28(1):104-118 [PMID: 30853828]
  39. Stroke. 2021 Jul;52(7):2356-2362 [PMID: 33874751]
  40. Front Neurol. 2022 Feb 28;13:843883 [PMID: 35295837]
  41. J Cereb Blood Flow Metab. 2018 May;38(5):793-808 [PMID: 28350198]
  42. Front Neurol. 2022 Mar 17;13:860255 [PMID: 35370910]
  43. JAMA Neurol. 2023 Aug 1;80(8):833-842 [PMID: 37330974]
  44. Sci Rep. 2019 Oct 15;9(1):14815 [PMID: 31616011]
  45. Front Neurol. 2022 Apr 06;13:857328 [PMID: 35463139]
  46. Neurochem Res. 2022 Mar;47(3):701-712 [PMID: 34792752]
  47. Science. 2020 Mar 13;367(6483): [PMID: 32001524]
  48. Acta Neuropathol Commun. 2023 Apr 7;11(1):61 [PMID: 37024941]
  49. Cereb Cortex. 2023 Jul 24;33(15):9263-9279 [PMID: 37310176]
  50. Front Oncol. 2022 Jan 10;11:790821 [PMID: 35083148]
  51. J Neurosci. 2015 Jan 14;35(2):518-26 [PMID: 25589747]
  52. Int J Neurosci. 2023 Jun;133(6):604-611 [PMID: 34219583]
  53. Acta Neurochir Suppl. 2020;127:59-64 [PMID: 31407064]
  54. Brain Commun. 2023 Apr 25;5(3):fcad134 [PMID: 37188222]
  55. Front Neurosci. 2023 Mar 31;17:1132393 [PMID: 37065921]
  56. Oxid Med Cell Longev. 2022 Jul 5;2022:2694316 [PMID: 35847591]
  57. Front Neurol. 2021 May 06;12:660885 [PMID: 34025564]
  58. Neurochem Res. 2021 Jun;46(6):1380-1389 [PMID: 33651262]
  59. J Neurotrauma. 2023 Feb;40(3-4):383-394 [PMID: 36106596]
  60. Nat Commun. 2020 Sep 10;11(1):4524 [PMID: 32913280]
  61. Oxid Med Cell Longev. 2022 Jun 17;2022:8808677 [PMID: 35761873]
  62. Stroke. 2014 Oct;45(10):3092-6 [PMID: 25190438]
  63. J Med Res. 1914 Sep;31(1):51-91 [PMID: 19972194]
  64. J Neuroimmunol. 2020 Dec 15;349:577407 [PMID: 33032017]
  65. Brain Commun. 2021 Mar 21;3(2):fcab043 [PMID: 34235434]
  66. Sci Rep. 2020 Apr 10;10(1):6254 [PMID: 32277097]
  67. Sci Rep. 2018 May 8;8(1):7194 [PMID: 29740121]
  68. Front Aging Neurosci. 2021 Jan 26;12:611494 [PMID: 33574749]
  69. Front Aging Neurosci. 2021 Nov 08;13:756249 [PMID: 34819849]
  70. J Cereb Blood Flow Metab. 2019 Nov;39(11):2258-2267 [PMID: 30092696]
  71. Brain. 2017 Oct 1;140(10):2691-2705 [PMID: 28969373]
  72. Front Cell Neurosci. 2022 Sep 02;16:981399 [PMID: 36119130]
  73. Front Oncol. 2021 Sep 23;11:744318 [PMID: 34631582]
  74. CNS Neurosci Ther. 2023 Dec;29(12):3876-3888 [PMID: 37353947]

MeSH Term

Animals
Humans
Glymphatic System
Neurosurgeons
Tissue Plasminogen Activator
Brain
Subarachnoid Hemorrhage
Brain Injuries, Traumatic
Hydrocephalus
Stroke

Chemicals

Tissue Plasminogen Activator

Word Cloud

Created with Highcharts 10.0.0glymphaticsystemstudiesconditionstherapeuticCSFbrainroleneurosurgicalfunctionclearancescopingreviewpotentialtargethumanincludedidiopathiciNPHintracranialIIHSAHstroketumorsTBIdynamicsdysfunctioneffectsedemaregulationAQP4channelscriticaldiscoveryrevolutionizedunderstandingcerebrospinalfluidcirculationinterstitialwasteaimssynthesizecurrentliteraturesystem'sconductedcomprehensivesearchPubMedScopusdatabasespublishedJanuary12012October312023StudiesselectedbasedrelevanceanimalDataextractionfocusedmethodsquantifyingmainresultstotal67articlescoveringnormalpressurehydrocephalushypertensionsubarachnoidhemorrhagetraumaticinjurySignificantdysregulationnotedevidenceimpaireddelayedindicatednimodipinetissueplasminogenactivatoralterationsactivitycorrelatedextentneurologicalrecoveryhighlightedpost-injurycognitiveoutcomesResultsindicateaquaporin-4interventionplayspathophysiologyvariousinfluencingTargetingpresentssignificantstrategyAlthoughpromisingtranslationfindingsclinicalpracticerequiresFutureresearchfocusestablishingnon-invasivebiomarkersexploringlong-termneurosurgeons:Aquaporin-4BrainGlymphaticHeadinjuriesHydrocephalusNeurosurgery

Similar Articles

Cited By