IgG Antibody Responses to Epstein-Barr Virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Their Effective Potential for Disease Diagnosis and Pathological Antigenic Mimicry.

André Fonseca, Mateusz Szysz, Hoang Thien Ly, Clara Cordeiro, Nuno Sepúlveda
Author Information
  1. André Fonseca: Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal. ORCID
  2. Mateusz Szysz: Faculty of Mathematics & Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland.
  3. Hoang Thien Ly: Faculty of Mathematics & Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland.
  4. Clara Cordeiro: Faculty of Sciences and Technology, University of Algarve, 8005-139 Faro, Portugal. ORCID
  5. Nuno Sepúlveda: CEAUL-Centre of Statistics and its Applications, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal. ORCID

Abstract

The diagnosis and pathology of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) remain under debate. However, there is a growing body of evidence for an autoimmune component in ME/CFS caused by the Epstein-Barr virus (EBV) and other viral infections. In this work, we analyzed a large public dataset on the IgG antibodies to 3054 EBV peptides to understand whether these immune responses could help diagnose patients and trigger pathological autoimmunity; we used healthy controls (HCs) as a comparator cohort. Subsequently, we aimed at predicting the disease status of the study participants using a super learner algorithm targeting an accuracy of 85% when splitting data into train and test datasets. When we compared the data of all ME/CFS patients or the data of a subgroup of those patients with non-infectious or unknown disease triggers to the data of the HC, we could not find an antibody-based classifier that would meet the desired accuracy in the test dataset. However, we could identify a 26-antibody classifier that could distinguish ME/CFS patients with an infectious disease trigger from the HCs with 100% and 90% accuracies in the train and test sets, respectively. We finally performed a bioinformatic analysis of the EBV peptides associated with these 26 antibodies. We found no correlation between the importance metric of the selected antibodies in the classifier and the maximal sequence homology between human proteins and each EBV peptide recognized by these antibodies. In conclusion, these 26 antibodies against EBV have an effective potential for disease diagnosis in a subset of patients. However, the peptides associated with these antibodies are less likely to induce autoimmune B-cell responses that could explain the pathogenesis of ME/CFS.

Keywords

References

  1. Hum Mol Genet. 2020 Sep 30;29(R1):R117-R124 [PMID: 32744306]
  2. EClinicalMedicine. 2021 Aug;38:101019 [PMID: 34308300]
  3. J Neuroimmunol. 2014 Jul 15;272(1-2):56-61 [PMID: 24798244]
  4. Neuropsychol Rev. 2005 Mar;15(1):29-58 [PMID: 15929497]
  5. PLoS One. 2018 Mar 15;13(3):e0193672 [PMID: 29543914]
  6. Autoimmun Rev. 2023 Nov;22(11):103452 [PMID: 37742748]
  7. Clin Exp Rheumatol. 2006 Mar-Apr;24(2):179-82 [PMID: 16762155]
  8. Front Med (Lausanne). 2020 Apr 29;7:162 [PMID: 32411717]
  9. Brain Behav Immun. 2022 May;102:362-369 [PMID: 35318112]
  10. Sci Rep. 2023 Nov 14;13(1):19907 [PMID: 37963962]
  11. Clin Invest Med. 2008 Dec 01;31(6):E319-27 [PMID: 19032901]
  12. J Transl Med. 2011 May 28;9:81 [PMID: 21619669]
  13. iScience. 2020 Aug 06;23(9):101441 [PMID: 32827854]
  14. Nat Commun. 2019 Nov 5;10(1):4646 [PMID: 31690723]
  15. Int J Immunopathol Pharmacol. 2019 Jan-Dec;33:2058738418820402 [PMID: 30791746]
  16. Front Immunol. 2019 Aug 14;10:1946 [PMID: 31475007]
  17. Diagnostics (Basel). 2023 Feb 01;13(3): [PMID: 36766636]
  18. Immunol Today. 1991 Apr;12(4):105-10 [PMID: 2059311]
  19. Arthritis Rheum. 1975 Jan-Feb;18(1):67-75 [PMID: 1078778]
  20. J Transl Med. 2022 Mar 22;20(1):138 [PMID: 35317812]
  21. BMC Med. 2011 Jul 28;9:91 [PMID: 21794183]
  22. JCI Insight. 2022 Jun 8;7(11): [PMID: 35482424]
  23. J Clin Med. 2023 Oct 09;12(19): [PMID: 37835071]
  24. BMC Med Genomics. 2017 Feb 23;10(1):11 [PMID: 28231836]
  25. Science. 2022 Jan 21;375(6578):296-301 [PMID: 35025605]
  26. Front Immunol. 2020 Jul 23;11:1400 [PMID: 32793195]
  27. Nat Rev Neurosci. 2009 Jul;10(7):519-29 [PMID: 19513088]
  28. Ann Immunol (Paris). 1975 Apr;126(3):267-79 [PMID: 1101799]
  29. J Clin Med. 2021 Oct 19;10(20): [PMID: 34682909]
  30. Ann Intern Med. 2019 May 7;170(9):585-593 [PMID: 30934066]
  31. J Immunol. 2002 Jan 15;168(2):713-22 [PMID: 11777965]
  32. Mol Neurobiol. 2014 Apr;49(2):741-56 [PMID: 24068616]
  33. Curr Rheumatol Rep. 2008 Dec;10(6):482-91 [PMID: 19007540]
  34. Front Neurol. 2021 Dec 13;12:789784 [PMID: 34966354]
  35. PLoS Comput Biol. 2017 Oct 24;13(10):e1005812 [PMID: 29065113]
  36. Cell. 2020 Nov 25;183(5):1264-1281.e20 [PMID: 33091337]
  37. Clin Ther. 2019 Apr;41(4):675-698 [PMID: 30910331]
  38. Ann Rheum Dis. 1991 Nov;50(11):772-5 [PMID: 1722966]
  39. PLoS One. 2011;6(10):e26358 [PMID: 22039471]
  40. Autoimmun Rev. 2009 Feb;8(4):287-91 [PMID: 18801465]
  41. J Immunol. 1999 Sep 15;163(6):3071-5 [PMID: 10477571]
  42. J Oncol. 2020 May 27;2020:8097872 [PMID: 32565808]
  43. Brain Behav Immun. 2015 Nov;50:186-195 [PMID: 26148446]
  44. ESC Heart Fail. 2020 Jun;7(3):1064-1071 [PMID: 32154656]
  45. Nat Med. 2020 May;26(5):741-749 [PMID: 32405064]
  46. Neurology (ECronicon). 2016;4(2):41-45 [PMID: 28066845]
  47. PLoS One. 2013 Nov 28;8(11):e81155 [PMID: 24312270]
  48. Am J Med Genet C Semin Med Genet. 2017 Mar;175(1):175-180 [PMID: 28186393]
  49. PLoS One. 2015 Jul 01;10(7):e0129898 [PMID: 26132314]
  50. Philos Trans R Soc Lond B Biol Sci. 2013 May 06;368(1620):20120369 [PMID: 23650640]
  51. J Clin Med. 2020 Jul 30;9(8): [PMID: 32751659]
  52. Autoimmune Dis. 2011 Mar 15;2011:961702 [PMID: 21547093]
  53. J Immunol. 2006 Feb 15;176(4):2617-24 [PMID: 16456024]
  54. Trends Mol Med. 2007 Jun;13(6):241-51 [PMID: 17467339]
  55. Immunol Lett. 2021 Oct;238:29-31 [PMID: 34310987]
  56. Med Hypotheses. 2004;62(5):646-52 [PMID: 15082083]
  57. Ann N Y Acad Sci. 2006 Jul;1070:51-74 [PMID: 16888149]
  58. Sci Adv. 2015 Feb;1(1): [PMID: 26079000]
  59. Sci Rep. 2021 May 19;11(1):10604 [PMID: 34011981]
  60. Stat Appl Genet Mol Biol. 2007;6:Article25 [PMID: 17910531]
  61. J Transl Med. 2023 Sep 17;21(1):633 [PMID: 37718435]
  62. Front Pediatr. 2019 Mar 13;7:59 [PMID: 30918887]
  63. J Immunol. 2004 Jul 15;173(2):1292-7 [PMID: 15240722]
  64. Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):E4438-47 [PMID: 26216993]
  65. Front Neurol. 2022 Jun 27;13:890217 [PMID: 35832182]
  66. Curr Opin Immunol. 2001 Feb;13(1):114-9 [PMID: 11154927]
  67. BMC Bioinformatics. 2011 Mar 17;12:77 [PMID: 21414208]
  68. Sci Immunol. 2018 Sep 14;3(27): [PMID: 30217811]
  69. PLoS One. 2008;3(12):e4026 [PMID: 19107191]
  70. JAMA. 2015 Mar 17;313(11):1101-2 [PMID: 25668027]
  71. EMBO Rep. 2022 Sep 5;23(9):e55146 [PMID: 35993175]
  72. Insights Biomed. 2017;2(2): [PMID: 29430570]
  73. Front Med (Lausanne). 2021 Jul 05;8:686736 [PMID: 34291062]
  74. Front Immunol. 2020 Apr 09;11:578 [PMID: 32328064]
  75. J Biol Chem. 2003 Nov 14;278(46):45414-8 [PMID: 12960157]
  76. Front Pediatr. 2019 Feb 05;7:12 [PMID: 30805319]
  77. Genes (Basel). 2019 Feb 12;10(2): [PMID: 30759870]
  78. Front Immunol. 2022 Feb 10;13:840002 [PMID: 35222432]
  79. Front Genet. 2023 Apr 18;14:1148224 [PMID: 37144134]
  80. J Clin Pathol. 2005 Aug;58(8):826-32 [PMID: 16049284]
  81. Front Med (Lausanne). 2021 Jan 28;8:628029 [PMID: 33585528]
  82. Neurol Int. 2022 Dec 20;15(1):1-11 [PMID: 36648965]
  83. Biomolecules. 2021 Jan 29;11(2): [PMID: 33572802]
  84. Pathog Dis. 2013 Dec;69(3):205-12 [PMID: 23873730]
  85. Medicina (Kaunas). 2021 May 19;57(5): [PMID: 34069603]
  86. J Clin Invest. 2021 Jul 15;131(14): [PMID: 34263741]
  87. J Clin Invest. 2021 Jul 1;131(13): [PMID: 34196305]
  88. PLoS One. 2017 Jun 12;12(6):e0179124 [PMID: 28604802]
  89. Proteomes. 2022 Jun 13;10(2): [PMID: 35736801]
  90. Front Immunol. 2018 Feb 15;9:229 [PMID: 29497420]
  91. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5873-7 [PMID: 8390686]
  92. Transl Psychiatry. 2016 Feb 09;6:e730 [PMID: 26859813]
  93. Clin Exp Rheumatol. 2011 May-Jun;29(3):597-8 [PMID: 21722506]
  94. Front Immunol. 2012 Sep 17;3:287 [PMID: 23060876]
  95. Front Med (Lausanne). 2021 Apr 29;8:668944 [PMID: 33996867]
  96. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16955-16960 [PMID: 31375628]
  97. J Intern Med. 2012 Jul;272(1):74-84 [PMID: 22112145]
  98. J Transl Med. 2022 Dec 14;20(1):598 [PMID: 36517845]
  99. J Immunol. 2003 Dec 15;171(12):6750-6 [PMID: 14662879]
  100. Autoimmun Rev. 2018 Jun;17(6):601-609 [PMID: 29635081]
  101. PLoS One. 2012;7(11):e47891 [PMID: 23155374]
  102. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 [PMID: 26553804]
  103. Diagnostics (Basel). 2019 Aug 07;9(3): [PMID: 31394725]
  104. BMC Immunol. 2002 Oct 18;3:14 [PMID: 12385649]
  105. Front Immunol. 2019 Nov 21;10:2684 [PMID: 31824487]
  106. Cancer Chemother Pharmacol. 2016 Oct;78(4):661-71 [PMID: 27646791]
  107. J Health Psychol. 2019 Oct;24(12):1765-1769 [PMID: 28810428]
  108. Psychophysiology. 2010 Jul 1;47(4):615-24 [PMID: 20230500]
  109. Epigenetics. 2018;13(12):1174-1190 [PMID: 30516085]
  110. Front Med (Lausanne). 2022 Jun 24;9:921101 [PMID: 35814774]
  111. Front Immunol. 2021 Nov 15;12:656797 [PMID: 34867935]
  112. Heliyon. 2023 Jul 13;9(7):e18250 [PMID: 37519635]
  113. Front Neurol. 2020 Aug 11;11:826 [PMID: 32849252]

Grants

  1. SFRH/BD/147629/2019/Fundação para a Ciência e Tecnologia
  2. UIDB/00006/2020/Fundação para a Ciência e Tecnologia

MeSH Term

Humans
Fatigue Syndrome, Chronic
Herpesvirus 4, Human
Immunoglobulin G
Antibody Formation
Epstein-Barr Virus Infections
Molecular Mimicry
Peptides

Chemicals

Immunoglobulin G
Peptides

Word Cloud

Created with Highcharts 10.0.0antibodiesME/CFSEBVpatientsdiseasedataHoweverpeptidestestclassifierdiagnosisautoimmuneEpstein-BarrdatasetIgGresponsestriggerautoimmunityHCsaccuracytrainassociated26pathogenesispathologymyalgicencephalomyelitis/chronicfatiguesyndromeremaindebategrowingbodyevidencecomponentcausedvirusviralinfectionsworkanalyzedlargepublic3054understandwhetherimmunehelpdiagnosepathologicalusedhealthycontrolscomparatorcohortSubsequentlyaimedpredictingstatusstudyparticipantsusingsuperlearneralgorithmtargeting85%splittingdatasetscomparedsubgroupnon-infectiousunknowntriggersHCfindantibody-basedmeetdesiredidentify26-antibodydistinguishinfectious100%90%accuraciessetsrespectivelyfinallyperformedbioinformaticanalysisfoundcorrelationimportancemetricselectedmaximalsequencehomologyhumanproteinspeptiderecognizedconclusioneffectivepotentialsubsetlesslikelyinduceB-cellexplainAntibodyResponsesVirusMyalgicEncephalomyelitis/ChronicFatigueSyndrome:EffectivePotentialDiseaseDiagnosisPathologicalAntigenicMimicryantigenicmimicrybiomarkerdiscoverymachinelearning

Similar Articles

Cited By