Comprehensive Development of a Cellulose Acetate and Soy Protein-Based Scaffold for Nerve Regeneration.

Brandon Gutiérrez, María Eugenia González-Quijón, Paulina Martínez-Rodríguez, Josefa Alarcón-Apablaza, Karina Godoy, Diego Pulzatto Cury, María Florencia Lezcano, Daniel Vargas-Chávez, Fernando José Dias
Author Information
  1. Brandon Gutiérrez: Master Program in Dental Sciences, Dental School, Universidad de La Frontera, Temuco 4780000, Chile.
  2. María Eugenia González-Quijón: Department of Chemical Engineering, Universidad de La Frontera, Temuco 4780000, Chile.
  3. Paulina Martínez-Rodríguez: Oral Biology Research Centre (CIBO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile. ORCID
  4. Josefa Alarcón-Apablaza: Research Centre in Dental Sciences (CICO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile.
  5. Karina Godoy: Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4780000, Chile.
  6. Diego Pulzatto Cury: Department of Anatomy, Institute of Biomedical Sciences, Universidade de São Paulo (ICB-USP), São Paulo 05508-000, Brazil. ORCID
  7. María Florencia Lezcano: Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina. ORCID
  8. Daniel Vargas-Chávez: Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile. ORCID
  9. Fernando José Dias: Oral Biology Research Centre (CIBO-UFRO), Dental School, Universidad de La Frontera, Temuco 4780000, Chile. ORCID

Abstract

BACKGROUND: The elaboration of biocompatible nerve guide conduits (NGCs) has been studied in recent years as a treatment for total nerve rupture lesions (axonotmesis). Different natural polymers have been used in these studies, including cellulose associated with soy protein. The purpose of this report was to describe manufacturing NGCs suitable for nerve regeneration using the method of dip coating and evaporation of solvent with cellulose acetate (CA) functionalized with soy protein acid hydrolysate (SPAH).
METHODS: The manufacturing method and bacterial control precautions for the CA/SPAH NGCs were described. The structure of the NGCs was analyzed under a scanning electron microscope (SEM); porosity was analyzed with a degassing method using a porosimeter. Schwann cell (SCL 4.1/F7) biocompatibility of cell-seeded nerve guide conduits was evaluated with the MTT assay.
RESULTS: The method employed allowed an easy elaboration and customization of NGCs, free of bacteria, with pores in the internal surface, and the uniform wall thickness allowed manipulation, which showed flexibility; additionally, the sample was suturable. The NGCs showed initial biocompatibility with Schwann cells, revealing cells adhered to the NGC structure after 5 days.
CONCLUSIONS: The fabricated CA/SPAH NGCs showed adequate features to be used for peripheral nerve regeneration studies. Future reports are necessary to discuss the ideal concentration of CA and SPAH and the mechanical and physicochemical properties of this biomaterial.

Keywords

References

  1. Medicine (Baltimore). 2022 Dec 2;101(48):e31655 [PMID: 36482555]
  2. Ann Anat. 2011 Jul;193(4):334-40 [PMID: 21474294]
  3. Br Med Bull. 2011;100:73-100 [PMID: 21429947]
  4. Clin Neurophysiol. 2008 Sep;119(9):1951-65 [PMID: 18482862]
  5. Exp Neurol. 2010 May;223(1):86-101 [PMID: 19769967]
  6. Int J Mol Sci. 2022 Nov 28;23(23): [PMID: 36499194]
  7. Yonsei Med J. 2022 Feb;63(2):114-123 [PMID: 35083896]
  8. J Biomater Sci Polym Ed. 2008;19(4):479-96 [PMID: 18318960]
  9. J Plast Reconstr Aesthet Surg. 2023 May;80:75-85 [PMID: 36996504]
  10. Biomaterials. 2008 Apr;29(11):1601-9 [PMID: 18155135]
  11. Polymers (Basel). 2021 Jul 31;13(15): [PMID: 34372166]
  12. Polymers (Basel). 2023 Mar 19;15(6): [PMID: 36987305]
  13. J Control Release. 2012 Jul 20;161(2):274-82 [PMID: 22178593]
  14. J Neural Eng. 2016 Sep 21;13(5):056019 [PMID: 27651128]
  15. J Peripher Nerv Syst. 2007 Jun;12(2):65-82 [PMID: 17565531]
  16. Biomed Mater Eng. 2015;25(1 Suppl):57-64 [PMID: 25538056]
  17. Microsurgery. 1989;10(2):130-3 [PMID: 2770512]
  18. Biomed Res Int. 2014;2014:698256 [PMID: 25276813]
  19. Acta Biomater. 2020 Apr 1;106:54-69 [PMID: 32044456]
  20. Int J Biol Macromol. 2020 Oct 1;160:112-127 [PMID: 32422270]
  21. ACS Appl Mater Interfaces. 2016 Feb 3;8(4):2781-95 [PMID: 26741400]
  22. Int J Biol Macromol. 2016 Feb;83:19-29 [PMID: 26616450]
  23. Neurobiol Dis. 2023 Jan;176:105952 [PMID: 36493976]
  24. Int J Mol Sci. 2021 Mar 31;22(7): [PMID: 33807473]
  25. J Tissue Eng. 2011;2(1):2041731411418392 [PMID: 22292105]
  26. Tissue Eng Part A. 2008 May;14(5):595-606 [PMID: 18399734]
  27. Prog Neurobiol. 2012 Jul;98(1):16-37 [PMID: 22609046]
  28. Med Devices (Auckl). 2014 Dec 01;7:405-24 [PMID: 25489251]
  29. Acta Biomater. 2019 Apr 1;88:332-345 [PMID: 30807875]
  30. ACS Omega. 2017 Nov 30;2(11):7471-7481 [PMID: 30023554]
  31. Exp Neurol. 2010 May;223(1):77-85 [PMID: 19348799]
  32. Int J Mol Sci. 2020 Jan 12;21(2): [PMID: 31940963]
  33. Biomed Mater. 2012 Apr;7(2):024102 [PMID: 22456722]
  34. Eur J Pharm Biopharm. 2013 Sep;85(1):139-42 [PMID: 23958324]
  35. Bioact Mater. 2021 Mar 21;6(10):3515-3527 [PMID: 33842738]
  36. J Biomater Appl. 2010 Feb;24(6):503-26 [PMID: 19033330]
  37. Cell Biochem Biophys. 2014 Apr;68(3):449-54 [PMID: 24037713]
  38. Tissue Eng Part C Methods. 2013 Mar;19(3):233-43 [PMID: 22871377]

Grants

  1. FONDECYT Iniciación 11190300/Agencia Nacional de Investigación y Desarrollo

Word Cloud

Created with Highcharts 10.0.0nerveNGCsmethodguidebiocompatibilityshowedelaborationconduitsusedstudiescellulosesoyproteinmanufacturingregenerationusingCASPAHCA/SPAHstructureanalyzedSchwannallowedcellsbiomaterialBACKGROUND:biocompatiblestudiedrecentyearstreatmenttotalrupturelesionsaxonotmesisDifferentnaturalpolymersincludingassociatedpurposereportdescribesuitabledipcoatingevaporationsolventacetatefunctionalizedacidhydrolysateMETHODS:bacterialcontrolprecautionsdescribedscanningelectronmicroscopeSEMporositydegassingporosimetercellSCL41/F7cell-seededevaluatedMTTassayRESULTS:employedeasycustomizationfreebacteriaporesinternalsurfaceuniformwallthicknessmanipulationflexibilityadditionallysamplesuturableinitialrevealingadheredNGC5daysCONCLUSIONS:fabricatedadequatefeaturesperipheralFuturereportsnecessarydiscussidealconcentrationmechanicalphysicochemicalpropertiesComprehensiveDevelopmentCelluloseAcetateSoyProtein-BasedScaffoldNerveRegenerationconductorsinjuryregenerativebiology

Similar Articles

Cited By