Effects of the synergistic treatments of arbuscular mycorrhizal fungi and trehalose on adaptability to salt stress in tomato seedlings.

Gongshan Chen, Anna Yang, Jianzhong Wang, Lixia Ke, Shaoxing Chen, Wentao Li
Author Information
  1. Gongshan Chen: Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China. ORCID
  2. Anna Yang: Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China. ORCID
  3. Jianzhong Wang: Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China.
  4. Lixia Ke: Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China.
  5. Shaoxing Chen: Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China. ORCID
  6. Wentao Li: Anhui Provincial Key Lab of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China.

Abstract

Arbuscular mycorrhizal fungi (AMF) could establish symbiosis with plant roots, which enhances plant resistance to various stresses, including drought stress and salt stress. Besides AMF, chemical stimulants such as trehalose (Tre) can also play an important role in helping plants alleviate damage of adversity. However, the mechanism of the effect of AMF combined with chemicals on plant stress resistance is unclear. The objective of this study was to explore the synergistic effects of AMF and exogenous Tre on the antioxidant system, osmoregulation, and resistance-protective substance in plants in response to salt stress. Tomato seedlings were inoculated with and combined with exogenous Tre in a greenhouse aseptic soil cultivation experiment. We measured the arbuscular mycorrhizal symbiont development, organic matter content, and antioxidant enzyme activity in tomato seedlings. Both AMF and Tre improved the synthesis of chlorophyll content in tomato seedlings; regulated the osmotic substance including soluble sugars, soluble protein, and proline of plants; and increased the activity of superoxide dismutase, peroxidase, and catalase. The combination of AMF and Tre also reduced the accumulation of malondialdehyde and alleviated the damage of harmful substances to plant cells in tomato seedlings. We studied the effects of AMF combined with extraneous Tre on salt tolerance in tomato seedlings, and the results showed that the synergistic treatment of AMF and Tre was more efficient than the effects of AMF inoculation or Tre spraying separately by regulating host substance synthesis, osmosis, and antioxidant enzymes. Our results indicated that the synergistic effects of AMF and Tre increased the plant adaptability against salt damage by enhancing cell osmotic protection and cell antioxidant capacity.
IMPORTANCE: AMF improve the plant adaptability to salt resistance by increasing mineral absorption and reducing the damage of saline soil. Trehalose plays an important role in plant response to salt damage by regulating osmotic pressure. Together, the use of AMF and trehalose in tomato seedlings proved efficient in regulating host substance synthesis, osmosis, and antioxidant enzymes. These synergistic effects significantly improved seedling adaptability to salt stress by enhancing cell osmotic protection and cell antioxidant capacity, ultimately reducing losses to crops grown on land where salinization has occurred.

Keywords

References

  1. Planta. 1997 Mar;201(3):293-7 [PMID: 19343407]
  2. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  3. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903 [PMID: 12456878]
  4. Plants (Basel). 2019 Dec 06;8(12): [PMID: 31817760]
  5. Trends Plant Sci. 2002 Sep;7(9):405-10 [PMID: 12234732]
  6. New Phytol. 2018 Jan;217(2):523-539 [PMID: 29205383]
  7. Mycorrhiza. 2005 May;15(3):225-30 [PMID: 15765207]
  8. J Fungi (Basel). 2021 May 05;7(5): [PMID: 34063150]
  9. BMC Genomics. 2019 Jul 17;20(1):589 [PMID: 31315555]
  10. Front Microbiol. 2019 Dec 18;10:2791 [PMID: 31921005]
  11. Funct Plant Biol. 2018 Feb;45(3):328-339 [PMID: 32290956]
  12. Mycorrhiza. 2002 Aug;12(4):185-90 [PMID: 12189473]
  13. Plants (Basel). 2020 Oct 12;9(10): [PMID: 33053807]
  14. Sci Rep. 2023 May 22;13(1):8249 [PMID: 37217569]
  15. Front Plant Sci. 2020 Mar 26;11:348 [PMID: 32273880]
  16. Cell Stress Chaperones. 2019 Jan;24(1):247-257 [PMID: 30632065]
  17. Front Plant Sci. 2022 Mar 11;13:772948 [PMID: 35360323]
  18. Front Plant Sci. 2019 Apr 30;10:499 [PMID: 31114594]
  19. Ying Yong Sheng Tai Xue Bao. 2021 May;32(5):1761-1767 [PMID: 34042371]
  20. Mycorrhiza. 2014 Nov;24(8):611-25 [PMID: 24770494]
  21. Int J Environ Res Public Health. 2022 Dec 19;19(24): [PMID: 36554943]
  22. Int J Mol Sci. 2022 Aug 21;23(16): [PMID: 36012720]
  23. Rice (N Y). 2023 Apr 10;16(1):18 [PMID: 37036613]
  24. Saudi J Biol Sci. 2018 Sep;25(6):1102-1114 [PMID: 30174509]
  25. Plant Cell Rep. 2020 Dec;39(12):1767-1784 [PMID: 32980968]
  26. Sci Rep. 2022 Nov 27;12(1):20360 [PMID: 36437295]
  27. Mycorrhiza. 2010 Jun;20(5):325-32 [PMID: 19936801]
  28. Mycorrhiza. 2004 Oct;14(5):307-12 [PMID: 14574620]
  29. J Fungi (Basel). 2022 Mar 01;8(3): [PMID: 35330252]
  30. Fungal Biol. 2023 Mar;127(3):918-926 [PMID: 36906382]
  31. Innovation (Camb). 2020 Apr 24;1(1):100017 [PMID: 34557705]
  32. Arch Biochem Biophys. 1968 Apr;125(1):189-98 [PMID: 5655425]
  33. Front Plant Sci. 2017 Apr 07;8:499 [PMID: 28439282]
  34. Physiol Mol Biol Plants. 2012 Jan;18(1):45-50 [PMID: 23573039]
  35. Front Plant Sci. 2020 Jan 10;10:1664 [PMID: 31998347]
  36. PLoS One. 2023 Jun 14;18(6):e0286505 [PMID: 37315011]
  37. PLoS One. 2020 Jan 31;15(1):e0228241 [PMID: 32004326]
  38. Environ Pollut. 2023 Oct 15;335:122292 [PMID: 37536477]
  39. Physiol Plant. 2022 Jan;174(1):e13647 [PMID: 35141895]
  40. PLoS One. 2020 Apr 14;15(4):e0231497 [PMID: 32287291]
  41. PLoS One. 2022 Apr 27;17(4):e0266254 [PMID: 35476629]
  42. Plants (Basel). 2021 Nov 17;10(11): [PMID: 34834853]
  43. Sci Rep. 2020 Feb 7;10(1):2084 [PMID: 32034269]
  44. Sci Rep. 2022 Nov 28;12(1):20439 [PMID: 36443368]
  45. Environ Pollut. 2023 Jun 15;327:121597 [PMID: 37031849]
  46. Plant Sci. 2014 Sep;226:2-13 [PMID: 25113445]
  47. Front Plant Sci. 2020 Dec 09;11:588550 [PMID: 33362816]
  48. J Exp Bot. 2020 Jan 7;71(2):653-668 [PMID: 31626290]
  49. BMC Microbiol. 2021 Sep 15;21(1):246 [PMID: 34521348]

Grants

  1. 31600026, 42371257/MOST | National Natural Science Foundation of China (NSFC)
  2. 1908085MD104/| Natural Science Foundation of Anhui Province ()
  3. KJ2016A276/| University Natural Science Research Project of Anhui Province ()

MeSH Term

Mycorrhizae
Seedlings
Solanum lycopersicum
Trehalose
Antioxidants
Salt Stress
Plants
Soil
Fungi

Chemicals

Trehalose
Antioxidants
Soil

Word Cloud

Created with Highcharts 10.0.0AMFsaltTreplantstressantioxidantseedlingssynergisticeffectstomatodamagemycorrhizaltrehalosesubstanceosmoticadaptabilitycellfungiresistanceplantscombinedarbuscularsynthesisregulatingincludingalsoimportantroleexogenoussystemresponsesoilcontentactivityimprovedsolubleincreasedresultsefficienthostosmosisenzymesenhancingprotectioncapacityreducingArbuscularestablishsymbiosisrootsenhancesvariousstressesdroughtBesideschemicalstimulantscanplayhelpingalleviateadversityHowevermechanismeffectchemicalsunclearobjectivestudyexploreosmoregulationresistance-protectiveTomatoinoculatedgreenhouseasepticcultivationexperimentmeasuredsymbiontdevelopmentorganicmatterenzymechlorophyllregulatedsugarsproteinprolinesuperoxidedismutaseperoxidasecatalasecombinationreducedaccumulationmalondialdehydealleviatedharmfulsubstancescellsstudiedextraneoustoleranceshowedtreatmentinoculationsprayingseparatelyindicatedIMPORTANCE:improveincreasingmineralabsorptionsalineTrehaloseplayspressureTogetheruseprovedsignificantlyseedlingultimatelylossescropsgrownlandsalinizationoccurredEffectstreatments

Similar Articles

Cited By