Evidence of mirror therapy for recruitment of ipsilateral motor pathways in stroke recovery: A resting fMRI study.

Kexu Zhang, Li Ding, Xu Wang, Jinyang Zhuang, Shanbao Tong, Jie Jia, Xiaoli Guo
Author Information
  1. Kexu Zhang: School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China.
  2. Li Ding: Department of Rehabilitation Medicine, Huashan Hospital Fudan University, Shanghai, China.
  3. Xu Wang: School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China.
  4. Jinyang Zhuang: Department of Rehabilitation Medicine, Huashan Hospital Fudan University, Shanghai, China.
  5. Shanbao Tong: School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China.
  6. Jie Jia: Department of Rehabilitation Medicine, Huashan Hospital Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China. Electronic address: shannonjj@126.com.
  7. Xiaoli Guo: School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China. Electronic address: meagle@sjtu.edu.cn.

Abstract

Mirror therapy (MT) has been proposed to promote motor recovery post-stroke through activation of mirror neuron system, recruitment of ipsilateral motor pathways, or/and increasing attention toward the affected limb. However, neuroimaging evidence for these mechanisms is still lacking. To uncover the underlying mechanisms, we designed a randomized controlled study and used a voxel-based whole-brain analysis of resting-state fMRI to explore the brain reorganizations induced by MT. Thirty-five stroke patients were randomized to an MT group (n ​= ​16) and a conventional therapy (CT) group (n ​= ​19) for a 4-week intervention. Before and after the intervention, the Fugl-Meyer Assessment Upper Limb subscale (FMA-UL) and resting-state fMRI were collected. A healthy cohort (n ​= ​16) was established for fMRI comparison. The changes in fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity were analyzed to investigate the impact of intervention. Results showed that greater FMA-UL improvement in the MT group was associated with the compensatory increase of fALFF in the contralesional precentral gyrus (M1) region and the re-establishment of functional connectivity between the bilateral M1 regions, which facilitate motor signals transmission via the ipsilateral motor pathways from the ipsilesional M1, contralesional M1, to the affected limb. A step-wise linear regression model revealed these two brain reorganization patterns collaboratively contributed to FMA-UL improvement. In conclusion, MT achieved motor rehabilitation primarily by recruitment of the ipsilateral motor pathways. Trial Registration Information: http://www.chictr.org.cn. Unique Identifier. ChiCTR-INR-17013644, submitted on December 2, 2017.

Keywords

References

  1. NeuroRehabilitation. 2013;33(4):593-603 [PMID: 24018372]
  2. Ann Neurol. 2010 Mar;67(3):365-75 [PMID: 20373348]
  3. NeuroRehabilitation. 2009;24(2):159-64 [PMID: 19339754]
  4. Neuroimaging Clin N Am. 2021 Feb;31(1):11-21 [PMID: 33220824]
  5. Stroke. 2011 May;42(5):1357-62 [PMID: 21441147]
  6. Hum Brain Mapp. 2009 Nov;30(11):3461-74 [PMID: 19370766]
  7. Front Hum Neurosci. 2017 Feb 06;11:54 [PMID: 28220070]
  8. Neuroimage. 2012 Aug 1;62(1):266-80 [PMID: 22584231]
  9. Neurorehabil Neural Repair. 2013 Feb;27(2):153-63 [PMID: 22995440]
  10. J Neurophysiol. 2004 May;91(5):2376-9 [PMID: 14681333]
  11. Neurorehabil Neural Repair. 2011 Mar-Apr;25(3):223-33 [PMID: 21051765]
  12. Ann N Y Acad Sci. 2021 Jun;1493(1):75-89 [PMID: 33442915]
  13. Behav Res Methods. 2014 Sep;46(3):634-40 [PMID: 24338625]
  14. Neuroradiology. 2016 May;58(5):503-11 [PMID: 26843179]
  15. Neurol India. 2012 Nov-Dec;60(6):570-6 [PMID: 23287316]
  16. Cereb Cortex. 2020 Jan 10;30(1):269-282 [PMID: 31044223]
  17. Ann Clin Transl Neurol. 2016 Jan 19;3(3):233-44 [PMID: 27042683]
  18. Lancet. 1999 Jun 12;353(9169):2035-6 [PMID: 10376620]
  19. PLoS One. 2015 May 27;10(5):e0127694 [PMID: 26018572]
  20. Neurorehabil Neural Repair. 2015 May;29(4):349-61 [PMID: 25160567]
  21. Neurorehabil Neural Repair. 2020 Apr;34(4):321-332 [PMID: 32102610]
  22. J Speech Lang Hear Res. 2008 Feb;51(1):S225-39 [PMID: 18230848]
  23. Front Hum Neurosci. 2013 May 08;7:184 [PMID: 23658541]
  24. BMJ Open. 2019 Mar 3;9(3):e022828 [PMID: 30833310]
  25. Neurotherapeutics. 2020 Oct;17(4):1919-1930 [PMID: 32671578]
  26. Annu Rev Neurosci. 2005;28:377-401 [PMID: 16022601]
  27. Cochrane Database Syst Rev. 2018 Jul 11;7:CD008449 [PMID: 29993119]
  28. NeuroRehabilitation. 2009;24(4):315-20 [PMID: 19597268]
  29. Ann Neurol. 2023 Oct;94(4):785-797 [PMID: 37402647]
  30. J Rehabil Med. 2013 Apr;45(4):410-3 [PMID: 23474778]
  31. Neurosurg Clin N Am. 2011 Apr;22(2):207-18, viii [PMID: 21435572]
  32. Brain Connect. 2012;2(3):125-41 [PMID: 22642651]
  33. J Neurol Neurosurg Psychiatry. 2003 Aug;74(8):1152-3 [PMID: 12876260]
  34. Front Syst Neurosci. 2010 May 14;4:13 [PMID: 20577591]
  35. Neuroimage. 2004;23 Suppl 1:S208-19 [PMID: 15501092]
  36. J Neurol Neurosurg Psychiatry. 2011 Apr;82(4):393-8 [PMID: 20861065]
  37. Neural Plast. 2018 Apr 24;2018:2321045 [PMID: 29853839]
  38. Behav Res Methods. 2020 Apr;52(2):464-488 [PMID: 31152384]
  39. Neuron. 2011 Nov 17;72(4):665-78 [PMID: 22099467]
  40. IEEE Trans Neural Syst Rehabil Eng. 2018 Sep;26(9):1897-1905 [PMID: 30106735]
  41. Stroke. 2013 Aug;44(8):2247-53 [PMID: 23743974]
  42. PLoS One. 2015 Apr 17;10(4):e0123850 [PMID: 25885897]
  43. Arch Phys Med Rehabil. 2004 Aug;85(8):1351-3 [PMID: 15295764]
  44. J Biomed Opt. 2013 Jun;18(6):066001 [PMID: 23733017]
  45. Brain Commun. 2022 Apr 08;4(2):fcac082 [PMID: 35474856]
  46. Cereb Cortex. 2019 Apr 1;29(4):1520-1531 [PMID: 29912297]
  47. Brain. 2009 Jul;132(Pt 7):1693-710 [PMID: 19506071]
  48. J Neuroeng Rehabil. 2015 Jul 11;12:56 [PMID: 26160599]
  49. Int J Neurosci. 2018 Oct;128(10):966-974 [PMID: 29490535]
  50. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  51. Neurorehabil Neural Repair. 2019 Apr;33(4):307-318 [PMID: 30909797]
  52. Neurorehabil Neural Repair. 2012 Jun;26(5):484-96 [PMID: 22247501]
  53. Cereb Cortex. 2009 Oct;19(10):2209-29 [PMID: 19221144]
  54. Neurorehabil Neural Repair. 2014 Nov-Dec;28(9):874-84 [PMID: 24642381]
  55. Int J Rehabil Res. 2015 Jun;38(2):173-80 [PMID: 25603539]

MeSH Term

Humans
Magnetic Resonance Imaging
Mirror Movement Therapy
Stroke
Brain
Stroke Rehabilitation
Efferent Pathways
Recovery of Function

Word Cloud

Created with Highcharts 10.0.0motorMTpathwaysfMRItherapyipsilateralM1recruitmentgroupinterventionFMA-ULconnectivityMirrormirroraffectedlimbmechanismsrandomizedstudyresting-statebrainstroken ​= ​16amplitudefALFFfunctionalimprovementcontralesionalproposedpromoterecoverypost-strokeactivationneuronsystemor/andincreasingattentiontowardHoweverneuroimagingevidencestilllackinguncoverunderlyingdesignedcontrolledusedvoxel-basedwhole-brainanalysisexplorereorganizationsinducedThirty-fivepatientsconventionalCTn ​= ​194-weekFugl-MeyerAssessmentUpperLimbsubscalecollectedhealthycohortestablishedcomparisonchangesfractionallow-frequencyfluctuationseed-basedanalyzedinvestigateimpactResultsshowedgreaterassociatedcompensatoryincreaseprecentralgyrusregionre-establishmentbilateralregionsfacilitatesignalstransmissionviaipsilesionalstep-wiselinearregressionmodelrevealedtworeorganizationpatternscollaborativelycontributedconclusionachievedrehabilitationprimarilyTrialRegistrationInformation:http://wwwchictrorgcnUniqueIdentifierChiCTR-INR-17013644submittedDecember22017Evidencerecovery:restingFractionallowfrequencyfluctuationsFunctionalIpsilateralResting-state

Similar Articles

Cited By