METTL14/miR-29c-3p axis drives aerobic glycolysis to promote triple-negative breast cancer progression though TRIM9-mediated PKM2 ubiquitination.
Hao Wu, Yile Jiao, Xinyi Guo, Zhenru Wu, Qing Lv
Author Information
Hao Wu: Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
Yile Jiao: Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
Xinyi Guo: Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
Zhenru Wu: Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China.
Qing Lv: Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China. ORCID
中文译文
English
The energy metabolic rearrangement of triple-negative breast cancer (TNBC) from oxidative phosphorylation to aerobic glycolysis is a significant biological feature and can promote the malignant progression. However, there is little knowledge about the functional mechanisms of methyltransferase-like protein 14 (METTL14) mediated contributes to TNBC malignant progression. Our study found that METTL14 expression was significantly upregulated in TNBC tissues and cell lines. Silencing METTL14 significantly inhibited TNBC cell growth and invasion in vitro, as well as suppressed tumour growth. Mechanically, METTL14 was first found to activate miR-29c-3p through m6A and regulate tripartite motif containing 9 (TRIM9) to promote ubiquitination of pyruvate kinase isoform M2 (PKM2) and lead to its transition from tetramer to dimer, resulting in glucose metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis to promote the progress of TNBC. Taken together, these findings reveal important roles of METTL14 in TNBC tumorigenesis and energy metabolism, which might represent a novel potential therapeutic target for TNBC.
Cell Death Dis. 2022 Mar 23;13(3):258
[PMID: 35319018 ]
Breast Cancer Res. 2020 Jun 9;22(1):61
[PMID: 32517735 ]
Microrna. 2017;6(2):97-101
[PMID: 28494721 ]
Cell Prolif. 2023 Jan;56(1):e13340
[PMID: 36162823 ]
Int J Biol Sci. 2023 Jan 1;19(1):89-103
[PMID: 36594100 ]
Cancer Metastasis Rev. 2020 Sep;39(3):837-886
[PMID: 32577859 ]
Front Oncol. 2020 Mar 02;10:159
[PMID: 32195169 ]
Cancer Res. 2018 May 1;78(9):2248-2261
[PMID: 29440169 ]
EMBO J. 2021 Feb 1;40(3):e105977
[PMID: 33470439 ]
Cancer Discov. 2019 Feb;9(2):176-198
[PMID: 30679171 ]
Expert Rev Mol Diagn. 2022 Apr;22(4):439-447
[PMID: 35395916 ]
Oncol Rep. 2020 May;43(5):1375-1386
[PMID: 32323801 ]
Genes (Basel). 2021 Aug 23;12(8):
[PMID: 34440464 ]
Cell Biosci. 2019 Jun 26;9:52
[PMID: 31391918 ]
FEBS Lett. 2014 Aug 19;588(16):2685-92
[PMID: 24747424 ]
Nat Rev Clin Oncol. 2022 Feb;19(2):91-113
[PMID: 34754128 ]
Arch Pharm Res. 2019 Oct;42(10):833-847
[PMID: 31473944 ]
Springerplus. 2015 Oct 22;4:635
[PMID: 26543769 ]
Mol Cancer. 2020 Aug 7;19(1):121
[PMID: 32767982 ]
Cancer Lett. 2013 Oct 10;339(2):153-8
[PMID: 23791887 ]
Signal Transduct Target Ther. 2022 Aug 30;7(1):300
[PMID: 36042206 ]
Int J Oncol. 2022 Dec;61(6):
[PMID: 36196894 ]
Mol Cell. 2023 Feb 2;83(3):428-441
[PMID: 36736310 ]
Int J Mol Sci. 2022 Sep 29;23(19):
[PMID: 36232799 ]
J Cell Mol Med. 2024 Feb;28(3):e18112
[PMID: 38263865 ]
Signal Transduct Target Ther. 2021 Feb 21;6(1):74
[PMID: 33611339 ]
Cell Death Dis. 2023 Feb 21;14(2):148
[PMID: 36810285 ]
Med Oncol. 2019 Mar 16;36(4):36
[PMID: 30879160 ]
Mol Cancer. 2022 Jan 12;21(1):14
[PMID: 35022030 ]
Nat Rev Mol Cell Biol. 2019 Oct;20(10):608-624
[PMID: 31520073 ]
Annu Rev Pathol. 2022 Jan 24;17:181-204
[PMID: 35073169 ]
Int J Biol Sci. 2022 Mar 6;18(6):2292-2303
[PMID: 35414786 ]
Cancer Metastasis Rev. 2019 Jun;38(1-2):157-164
[PMID: 30997670 ]
Cell Death Dis. 2021 Jun 15;12(6):617
[PMID: 34131102 ]
J Cancer. 2021 Apr 24;12(12):3566-3574
[PMID: 33995634 ]
Free Radic Biol Med. 2019 Nov 1;143:176-192
[PMID: 31401304 ]
Life Sci. 2020 Sep 15;257:118101
[PMID: 32679146 ]
Cancer Biol Med. 2022 Apr 05;:
[PMID: 35380032 ]
Mol Cancer. 2022 Feb 14;21(1):51
[PMID: 35164771 ]
Cancer Lett. 2021 Apr 10;503:240-248
[PMID: 33246091 ]
Mol Cancer. 2019 Dec 4;18(1):176
[PMID: 31801551 ]
JAMA. 2019 Jan 22;321(3):288-300
[PMID: 30667505 ]
J Cell Physiol. 2019 May;234(5):5451-5465
[PMID: 30471116 ]
Front Cell Dev Biol. 2021 Dec 22;9:778582
[PMID: 35004679 ]
J Hematol Oncol. 2022 Feb 3;15(1):13
[PMID: 35115038 ]
Protein Cell. 2023 Sep 14;14(9):683-697
[PMID: 37030005 ]
Mol Cancer. 2018 Oct 11;17(1):147
[PMID: 30309355 ]
J Cell Commun Signal. 2023 Dec;17(4):1323-1333
[PMID: 37249822 ]
Cell Rep. 2018 Apr 17;23(3):838-851
[PMID: 29669288 ]
Mol Biol Cell. 2017 Sep 1;28(18):2374-2385
[PMID: 28701345 ]
Nat Rev Cancer. 2020 Aug;20(8):417-436
[PMID: 32528185 ]
Cell Prolif. 2022 Jan;55(1):e13168
[PMID: 34904301 ]
Pathogens. 2021 Jun 22;10(7):
[PMID: 34206267 ]
Mol Cancer. 2020 May 22;19(1):94
[PMID: 32443966 ]
Nat Med. 2014 Nov;20(11):1242-53
[PMID: 25375928 ]
EMBO Mol Med. 2023 Jan 11;15(1):e16033
[PMID: 36426578 ]
Cell Death Dis. 2021 Jun 9;12(6):598
[PMID: 34108450 ]
J Hematol Oncol. 2019 Nov 22;12(1):121
[PMID: 31757221 ]
Int J Mol Sci. 2020 Mar 03;21(5):
[PMID: 32138313 ]
Cell Signal. 2023 Mar;103:110566
[PMID: 36539001 ]
82100655/National Natural Science Foundation of China
2022YFQ0003/Department of Science and Technology of Sichuan province, China
2022YFS0313/Department of Science and Technology of Sichuan province, China
Humans
MicroRNAs
Triple Negative Breast Neoplasms
Cell Line, Tumor
Cell Proliferation
Glycolysis
Gene Expression Regulation, Neoplastic
Cell Movement
Methyltransferases
MicroRNAs
METTL14 protein, human
Methyltransferases