SHIP: a computational framework for simulating and validating novel technologies in hardware spiking neural networks.

Emanuele Gemo, Sabina Spiga, Stefano Brivio
Author Information
  1. Emanuele Gemo: CNR-IMM, Unit of Agrate Brianza, Agrate Brianza, Italy.
  2. Sabina Spiga: CNR-IMM, Unit of Agrate Brianza, Agrate Brianza, Italy.
  3. Stefano Brivio: CNR-IMM, Unit of Agrate Brianza, Agrate Brianza, Italy.

Abstract

Investigations in the field of spiking neural networks (SNNs) encompass diverse, yet overlapping, scientific disciplines. Examples range from purely neuroscientific investigations, researches on computational aspects of neuroscience, or applicative-oriented studies aiming to improve SNNs performance or to develop artificial hardware counterparts. However, the simulation of SNNs is a complex task that can not be adequately addressed with a single platform applicable to all scenarios. The optimization of a simulation environment to meet specific metrics often entails compromises in other aspects. This computational challenge has led to an apparent dichotomy of approaches, with model-driven algorithms dedicated to the detailed simulation of biological networks, and data-driven algorithms designed for efficient processing of large input datasets. Nevertheless, material scientists, device physicists, and neuromorphic engineers who develop new technologies for spiking neuromorphic hardware solutions would find benefit in a simulation environment that borrows aspects from both approaches, thus facilitating modeling, analysis, and training of prospective SNN systems. This manuscript explores the numerical challenges deriving from the simulation of spiking neural networks, and introduces SHIP, Spiking (neural network) Hardware In PyTorch, a numerical tool that supports the investigation and/or validation of materials, devices, small circuit blocks within SNN architectures. SHIP facilitates the algorithmic definition of the models for the components of a network, the monitoring of states and output of the modeled systems, and the training of the synaptic weights of the network, by way of user-defined unsupervised learning rules or supervised training techniques derived from conventional machine learning. SHIP offers a valuable tool for researchers and developers in the field of hardware-based spiking neural networks, enabling efficient simulation and validation of novel technologies.

Keywords

References

  1. Front Neurosci. 2011 May 31;5:73 [PMID: 21747754]
  2. Neural Comput. 2006 Jun;18(6):1318-48 [PMID: 16764506]
  3. Front Neurosci. 2017 Dec 07;11:682 [PMID: 29375284]
  4. Nanotechnology. 2018 Oct 31;30(1):015102 [PMID: 30378572]
  5. Neural Netw. 2020 May;125:258-280 [PMID: 32146356]
  6. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  7. Biosystems. 1998 Sep-Dec;48(1-3):57-65 [PMID: 9886632]
  8. Front Neuroinform. 2014 Aug 14;8:70 [PMID: 25177291]
  9. Biol Cybern. 1999 Nov;81(5-6):381-402 [PMID: 10592015]
  10. Front Neurosci. 2022 Apr 07;16:853010 [PMID: 35464318]
  11. Front Neurosci. 2019 Jul 12;13:625 [PMID: 31354403]
  12. Front Neuroinform. 2014 Jan 06;7:48 [PMID: 24431999]
  13. Front Neurosci. 2022 Nov 10;16:1012964 [PMID: 36440266]
  14. Neural Comput. 2007 Oct;19(10):2581-603 [PMID: 17716003]
  15. Front Neurosci. 2022 May 03;16:885322 [PMID: 35592261]
  16. IEEE Trans Pattern Anal Mach Intell. 2020 Aug;42(8):2051-2064 [PMID: 30843817]
  17. Neural Comput. 2006 Dec;18(12):2959-93 [PMID: 17052155]
  18. Neural Netw. 2019 Mar;111:47-63 [PMID: 30682710]
  19. IEEE Trans Biomed Circuits Syst. 2018 Feb;12(1):106-122 [PMID: 29377800]
  20. Front Neuroinform. 2014 Sep 11;8:76 [PMID: 25309418]
  21. Sci Rep. 2016 Jan 07;6:18854 [PMID: 26740369]
  22. Front Neuroinform. 2015 Jul 31;9:19 [PMID: 26283957]
  23. Front Neurosci. 2017 Jun 28;11:350 [PMID: 28701911]
  24. Front Neurosci. 2016 Nov 08;10:508 [PMID: 27877107]
  25. Nature. 2019 Nov;575(7784):607-617 [PMID: 31776490]
  26. Materials (Basel). 2020 Jan 01;13(1): [PMID: 31906325]
  27. Front Neurosci. 2016 Oct 25;10:482 [PMID: 27826226]
  28. Nature. 2019 Aug;572(7767):106-111 [PMID: 31367028]
  29. Front Neuroinform. 2018 Mar 15;12:10 [PMID: 29599715]
  30. Front Neurosci. 2022 Sep 29;16:944262 [PMID: 36248639]
  31. Nat Nanotechnol. 2022 May;17(5):507-513 [PMID: 35347271]
  32. Front Neurosci. 2022 Feb 24;16:795876 [PMID: 35281488]
  33. Methods Mol Biol. 2007;401:103-25 [PMID: 18368363]
  34. Front Neuroinform. 2013 Oct 02;7:19 [PMID: 24106475]
  35. Front Neurosci. 2022 Oct 28;16:1023470 [PMID: 36389242]
  36. Front Neurosci. 2020 May 12;14:424 [PMID: 32477050]
  37. Sci Rep. 2020 Jul 9;10(1):11360 [PMID: 32647161]
  38. Neural Netw. 2007 Apr;20(3):323-34 [PMID: 17517489]
  39. Brain Sci. 2022 Jun 30;12(7): [PMID: 35884670]
  40. Front Neuroinform. 2018 Dec 12;12:89 [PMID: 30631269]
  41. Front Neuroinform. 2017 Jul 20;11:46 [PMID: 28775687]
  42. Elife. 2019 Aug 20;8: [PMID: 31429824]
  43. Front Neurosci. 2022 Nov 11;16:951164 [PMID: 36440280]
  44. IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2635-49 [PMID: 25643415]
  45. IEEE Trans Neural Netw. 2003;14(6):1569-72 [PMID: 18244602]
  46. J Comput Neurosci. 2007 Dec;23(3):349-98 [PMID: 17629781]

Word Cloud

Created with Highcharts 10.0.0simulationspikingneuralnetworkstrainingnetworkSNNscomputationalaspectshardwareneuromorphictechnologiesSHIPfielddevelopenvironmentapproachesalgorithmsefficientSNNsystemsnumericaltoolvalidationlearningsupervisednovelInvestigationsencompassdiverseyetoverlappingscientificdisciplinesExamplesrangepurelyneuroscientificinvestigationsresearchesneuroscienceapplicative-orientedstudiesaimingimproveperformanceartificialcounterpartsHowevercomplextaskcanadequatelyaddressedsingleplatformapplicablescenariosoptimizationmeetspecificmetricsoftenentailscompromiseschallengeledapparentdichotomymodel-drivendedicateddetailedbiologicaldata-drivendesignedprocessinglargeinputdatasetsNeverthelessmaterialscientistsdevicephysicistsengineersnewsolutionsfindbenefitborrowsthusfacilitatingmodelinganalysisprospectivemanuscriptexploreschallengesderivingintroducesSpikingHardwarePyTorchsupportsinvestigationand/ormaterialsdevicessmallcircuitblockswithinarchitecturesfacilitatesalgorithmicdefinitionmodelscomponentsmonitoringstatesoutputmodeledsynapticweightswayuser-definedunsupervisedrulestechniquesderivedconventionalmachineoffersvaluableresearchersdevelopershardware-basedenablingSHIP:frameworksimulatingvalidatingcompactmodeldataflowengineeringplatformstemporalprogress

Similar Articles

Cited By