Spatial transcriptomic analysis of the mouse brain following chronic social defeat stress.

Ting Wang, Zhihong Song, Xin Zhao, Yan Wu, Liying Wu, Abbas Haghparast, Haitao Wu
Author Information
  1. Ting Wang: Department of Neurobiology Beijing Institute of Basic Medical Sciences Beijing China.
  2. Zhihong Song: Department of Neurobiology Beijing Institute of Basic Medical Sciences Beijing China. ORCID
  3. Xin Zhao: Department of Neurobiology Beijing Institute of Basic Medical Sciences Beijing China.
  4. Yan Wu: Department of Neurobiology Beijing Institute of Basic Medical Sciences Beijing China.
  5. Liying Wu: Department of Neurobiology Beijing Institute of Basic Medical Sciences Beijing China.
  6. Abbas Haghparast: Neuroscience Research Center, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran.
  7. Haitao Wu: Department of Neurobiology Beijing Institute of Basic Medical Sciences Beijing China. ORCID

Abstract

Depression is a highly prevalent and disabling mental disorder, involving numerous genetic changes that are associated with abnormal functions in multiple regions of the brain. However, there is little transcriptomic-wide characterization of chronic social defeat stress (CSDS) to comprehensively compare the transcriptional changes in multiple brain regions. Spatial transcriptomics (ST) was used to reveal the spatial difference of gene expression in the control, resilient (RES) and susceptible (SUS) mouse brains, and annotated eight anatomical brain regions and six cell types. The gene expression profiles uncovered that CSDS leads to gene synchrony changes in different brain regions. Then it was identified that inhibitory neurons and synaptic functions in multiple regions were primarily affected by CSDS. The brain regions Hippocampus (HIP), Isocortex, and Amygdala (AMY) present more pronounced transcriptional changes in genes associated with depressive psychiatric disorders than other regions. Signalling communication between these three brain regions may play a critical role in susceptibility to CSDS. Taken together, this study provides important new insights into CSDS susceptibility at the ST level, which offers a new approach for understanding and treating depression.

Keywords

References

  1. Nat Methods. 2020 Feb;17(2):159-162 [PMID: 31819264]
  2. Neuropharmacology. 2021 Oct 1;197:108708 [PMID: 34274350]
  3. Nat Med. 2016 Mar;22(3):238-49 [PMID: 26937618]
  4. Mol Psychiatry. 2011 Apr;16(4):383-406 [PMID: 21079608]
  5. Nat Neurosci. 2021 Mar;24(3):425-436 [PMID: 33558695]
  6. Physiol Behav. 2021 Mar 1;230:113311 [PMID: 33412189]
  7. iScience. 2020 Sep 15;23(10):101556 [PMID: 33083725]
  8. Nat Med. 2012 Sep;18(9):1413-7 [PMID: 22885997]
  9. Nat Neurosci. 2020 Jun;23(6):771-781 [PMID: 32341540]
  10. Science. 2021 Jun 18;372(6548):1265-1266 [PMID: 34140371]
  11. Biophys Rev (Melville). 2023 Feb 07;4(1):011306 [PMID: 38505815]
  12. Nat Commun. 2022 Jan 10;13(1):164 [PMID: 35013188]
  13. Cells. 2021 May 21;10(6): [PMID: 34064233]
  14. Nucleic Acids Res. 2021 May 21;49(9):e50 [PMID: 33544846]
  15. Neuron. 2022 Apr 6;110(7):1116-1138 [PMID: 35182484]
  16. Mol Psychiatry. 2024 Jun;29(6):1671-1682 [PMID: 36437312]
  17. Am J Psychiatry. 2009 Sep;166(9):1011-24 [PMID: 19605536]
  18. Genes Brain Behav. 2014 Jan;13(1):13-24 [PMID: 24320616]
  19. Sci Rep. 2017 Nov 8;7(1):15061 [PMID: 29118417]
  20. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  21. Nat Rev Genet. 2021 Oct;22(10):627-644 [PMID: 34145435]
  22. J Neurosci. 2019 Jul 10;39(28):5594-5605 [PMID: 31085604]
  23. Mol Neurodegener. 2022 Nov 18;17(1):74 [PMID: 36397124]
  24. Cell. 2016 Aug 25;166(5):1295-1307.e21 [PMID: 27565350]
  25. FEBS Lett. 2005 Feb 14;579(5):1172-6 [PMID: 15710408]
  26. Commun Biol. 2020 Oct 9;3(1):565 [PMID: 33037292]
  27. Annu Rev Neurosci. 2001;24:1217-81 [PMID: 11520933]
  28. Nat Protoc. 2011 Jul 21;6(8):1183-91 [PMID: 21799487]
  29. Bioinformatics. 2017 Aug 15;33(16):2591-2593 [PMID: 28398467]
  30. Nucleic Acids Res. 2010 Sep;38(17):e169 [PMID: 20660011]
  31. Lancet Psychiatry. 2016 May;3(5):472-80 [PMID: 27150382]
  32. Trends Neurosci. 2016 Jun;39(6):378-393 [PMID: 27083478]
  33. Front Neuroendocrinol. 2009 Aug;30(3):379-95 [PMID: 19442684]
  34. Transl Psychiatry. 2021 Jan 22;11(1):73 [PMID: 33483466]
  35. Exploration (Beijing). 2023 Oct 13;3(6):20220133 [PMID: 38264685]
  36. Nature. 2021 Aug;596(7871):211-220 [PMID: 34381231]
  37. Int J Neuropsychopharmacol. 2011 Jul;14(6):721-34 [PMID: 21226980]
  38. Nature. 2022 Aug;608(7923):586-592 [PMID: 35859170]
  39. J Neurosci. 2002 Apr 15;22(8):3251-61 [PMID: 11943826]
  40. Neuron. 2019 Jul 17;103(2):217-234.e4 [PMID: 31171447]
  41. Cell. 2020 Aug 20;182(4):976-991.e19 [PMID: 32702314]
  42. Psychoneuroendocrinology. 2009 Jul;34(6):833-43 [PMID: 19181454]
  43. Neurosci Bull. 2022 Jan;38(1):16-28 [PMID: 34494228]
  44. Sci Rep. 2018 Jun 25;8(1):9588 [PMID: 29942049]
  45. Comput Struct Biotechnol J. 2022 Aug 03;20:4072-4081 [PMID: 35983234]
  46. Nat Med. 2017 Sep;23(9):1102-1111 [PMID: 28825715]
  47. Sci Adv. 2020 Jun 26;6(26):eabb3446 [PMID: 32637622]
  48. Nat Neurosci. 2009 Jan;12(1):15-20 [PMID: 19029886]
  49. Cell. 2007 Oct 19;131(2):391-404 [PMID: 17956738]
  50. Science. 2019 Apr 5;364(6435):89-93 [PMID: 30948552]
  51. Nat Neurosci. 2019 Oct;22(10):1696-1708 [PMID: 31551601]
  52. Biol Psychiatry. 2016 May 15;79(10):840-849 [PMID: 26422005]
  53. Science. 2018 Nov 16;362(6416): [PMID: 30385464]
  54. Transl Psychiatry. 2021 Nov 15;11(1):588 [PMID: 34782594]
  55. Am J Psychiatry. 2004 Feb;161(2):195-216 [PMID: 14754765]
  56. Genes (Basel). 2023 Feb 14;14(2): [PMID: 36833409]
  57. Acta Neuropsychiatr. 2018 Apr;30(2):117-122 [PMID: 28566105]
  58. Neuron. 2019 Jul 17;103(2):323-334.e7 [PMID: 31178114]
  59. Mol Psychiatry. 2016 Dec;21(12):1740-1751 [PMID: 27457814]
  60. Neuron. 2013 Aug 21;79(4):658-64 [PMID: 23972595]
  61. BMC Genomics. 2020 Jul 14;21(1):482 [PMID: 32664861]
  62. Pharmacol Res. 2020 Sep;159:105038 [PMID: 32565311]
  63. Lancet Psychiatry. 2016 May;3(5):415-24 [PMID: 27083119]
  64. Prog Neurobiol. 2017 May;152:21-37 [PMID: 26724279]
  65. Nat Methods. 2021 Jan;18(1):15-18 [PMID: 33408402]
  66. Neuron. 2016 Jun 1;90(5):969-83 [PMID: 27181059]
  67. Curr Med Chem. 2021;28(15):2943-2959 [PMID: 32811396]
  68. Sci Rep. 2018 Jul 26;8(1):11240 [PMID: 30050134]
  69. PLoS One. 2010 Apr 01;5(4):e9970 [PMID: 20376317]
  70. Nature. 2011 Feb 24;470(7335):492-7 [PMID: 21350482]
  71. Prog Neurobiol. 2020 Jan;184:101721 [PMID: 31704315]
  72. Neuron. 2019 Apr 3;102(1):75-90 [PMID: 30946828]
  73. Mol Psychiatry. 2022 Dec;27(12):4843-4860 [PMID: 36028570]
  74. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4994-9 [PMID: 24707048]
  75. Psychiatry Clin Neurosci. 2019 Oct;73(10):613-627 [PMID: 31215725]
  76. Nature. 2023 Jan;613(7945):696-703 [PMID: 36450985]
  77. Transl Psychiatry. 2022 Mar 4;12(1):91 [PMID: 35246507]
  78. Life Sci. 2020 Oct 1;258:118099 [PMID: 32682917]
  79. Genome Res. 2021 Oct;31(10):1706-1718 [PMID: 34599004]
  80. Cell. 2018 Mar 22;173(1):166-180.e14 [PMID: 29502969]
  81. Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25800-25809 [PMID: 32989152]
  82. Neuropharmacology. 2022 Aug 1;213:109076 [PMID: 35500677]
  83. Biol Psychiatry. 2011 Apr 15;69(8):754-61 [PMID: 21292242]
  84. Nature. 2020 Oct;586(7829):417-423 [PMID: 32999463]