Lipid nanoparticles based on natural matrices with activity against multidrug resistant bacterial species.

Elenice Francisco da Silva, Luciana Machado Bastos, Belchiolina Beatriz Fonseca, Rosineide Marques Ribas, Simone Sommerfeld, Henrique Machado Pires, Fernanda Aparecida Longato Dos Santos, Lígia Nunes de Morais Ribeiro
Author Information
  1. Elenice Francisco da Silva: Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil.
  2. Luciana Machado Bastos: Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil.
  3. Belchiolina Beatriz Fonseca: Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil.
  4. Rosineide Marques Ribas: Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Brazil.
  5. Simone Sommerfeld: School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil.
  6. Henrique Machado Pires: Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil.
  7. Fernanda Aparecida Longato Dos Santos: School of Veterinary Medicine, Federal University of Uberlandia, Uberlandia, Brazil.
  8. Lígia Nunes de Morais Ribeiro: Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil.

Abstract

Lately, the bacterial multidrug resistance has been a reason to public health concerning around world. The development of new pharmacology therapies against infections caused by multidrug-resistant bacteria is urgent. In this work, we developed 10 NLC formulations composed of essential oils (EO), vegetable butter and surfactant. The formulations were evaluated for long-term and thermal cycling stability studies in terms of (particle size, polydispersion index and Zeta potential). antimicrobial assays were performed using disk diffusion test and by the determination of the minimum inhibitory concentration (MIC) performed with fresh and a year-old NLC. The most promising system and its excipients were structurally characterized through experimental methodologies (FTIR-ATR, DSC and FE-SEM). Finally, this same formulation was studied through nanotoxicity assays on the chicken embryo model, analyzing different parameters, as viability and weight changes of embryos and annexes. All the developed formulations presented long-term physicochemical and thermal stability. The formulation based on cinnamon EO presented activity against strains of , and isolated from humans and biocompatibility. Considering these promising results, such system is able to be further tested on efficacy assays.

Keywords

References

  1. Eur J Pharm Sci. 2017 Aug 30;106:102-112 [PMID: 28558981]
  2. Int J Nanomedicine. 2012;7:49-60 [PMID: 22275822]
  3. Clinics (Sao Paulo). 2023 Jun 13;78:100231 [PMID: 37348255]
  4. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  5. Daru. 2011;19(1):23-32 [PMID: 22615636]
  6. Pharmaceutics. 2021 Mar 03;13(3): [PMID: 33802570]
  7. Pathogens. 2019 Jan 28;8(1): [PMID: 30696051]
  8. Int J Pharm. 2021 May 15;601:120538 [PMID: 33781879]
  9. Eur J Pharm Sci. 2016 Oct 10;93:192-202 [PMID: 27543066]
  10. Int J Pharm. 2018 Sep 5;548(1):217-226 [PMID: 29966744]
  11. Antimicrob Resist Infect Control. 2022 Mar 7;11(1):45 [PMID: 35255988]
  12. Front Microbiol. 2022 Oct 10;13:989667 [PMID: 36299724]
  13. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  14. Microorganisms. 2022 Jul 26;10(8): [PMID: 35893562]
  15. Pharmaceutics. 2023 Apr 07;15(4): [PMID: 37111673]
  16. Nature. 2022 Jan;601(7894):606-611 [PMID: 34987225]
  17. J Antimicrob Chemother. 2002 Feb;49 Suppl 1:21-30 [PMID: 11801577]
  18. J Hosp Infect. 2018 Jul;99(3):318-324 [PMID: 29522784]
  19. Eur J Pharm Biopharm. 2004 Jul;58(1):83-90 [PMID: 15207541]
  20. Front Cell Infect Microbiol. 2021 Jan 08;10:571040 [PMID: 33489930]
  21. Microorganisms. 2023 May 16;11(5): [PMID: 37317274]
  22. Pharmaceutics. 2018 May 18;10(2): [PMID: 29783687]
  23. Pharmaceutics. 2020 Aug 14;12(8): [PMID: 32823823]
  24. Pharmaceutics. 2021 Sep 24;13(10): [PMID: 34683846]
  25. Clin Microbiol Infect. 2012 Mar;18(3):268-81 [PMID: 21793988]
  26. J Hosp Infect. 2020 Oct;106(2):303-310 [PMID: 32693085]
  27. J Appl Microbiol. 2020 Apr;128(4):1025-1037 [PMID: 31793161]
  28. Pharmaceutics. 2021 Oct 21;13(11): [PMID: 34834175]
  29. Front Mol Biosci. 2020 Oct 30;7:587997 [PMID: 33195435]
  30. Biomed Res Int. 2017;2017:9268468 [PMID: 29230418]
  31. Antibiotics (Basel). 2023 Jan 12;12(1): [PMID: 36671364]
  32. Front Antibiot. 2023;2: [PMID: 36845830]
  33. Front Bioeng Biotechnol. 2020 Jun 25;8:563 [PMID: 32671026]
  34. Drug Deliv. 2022 Dec;29(1):1007-1024 [PMID: 35363104]
  35. Sci Rep. 2021 Nov 2;11(1):21463 [PMID: 34728779]
  36. Int J Pharm. 2015 Apr 10;483(1-2):220-43 [PMID: 25683145]
  37. Expert Opin Drug Deliv. 2019 Jul;16(7):701-714 [PMID: 31172838]
  38. Microsc Res Tech. 2022 Dec;85(12):3921-3931 [PMID: 36250506]

MeSH Term

Chick Embryo
Animals
Humans
Drug Resistance, Multiple, Bacterial
Liposomes
Acinetobacter baumannii
Chickens
Oils, Volatile
Nanoparticles

Chemicals

Lipid Nanoparticles
Liposomes
Oils, Volatile

Word Cloud

Created with Highcharts 10.0.0formulationsassaysbacterialmultidrugbacteriadevelopedNLCessentialEOvegetablebutterlong-termthermalstabilityperformedpromisingsystemformulationpresentedbasedactivitynaturalLatelyresistancereasonpublichealthconcerningaroundworlddevelopmentnewpharmacologytherapiesinfectionscausedmultidrug-resistanturgentwork10composedoilssurfactantevaluatedcyclingstudiestermsparticlesizepolydispersionindexZetapotentialantimicrobialusingdiskdiffusiontestdeterminationminimuminhibitoryconcentrationMICfreshyear-oldexcipientsstructurallycharacterizedexperimentalmethodologiesFTIR-ATRDSCFE-SEMFinallystudiednanotoxicitychickenembryomodelanalyzingdifferentparametersviabilityweightchangesembryosannexesphysicochemicalcinnamonstrainsisolatedhumansbiocompatibilityConsideringresultsabletestedefficacyLipidnanoparticlesmatricesresistantspeciesoilmulti-resistantnanostructuredlipidcarriersantibiotics

Similar Articles

Cited By