Advancements in textile dye removal: a critical review of layered double hydroxides and clay minerals as efficient adsorbents.

Giphin George, Anu Mary Ealias, Manickam Puratchiveeran Saravanakumar
Author Information
  1. Giphin George: Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., Green Fields, 522302, India. giphingeorge@gmail.com. ORCID
  2. Anu Mary Ealias: Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, A.P., Green Fields, 522302, India.
  3. Manickam Puratchiveeran Saravanakumar: Department of Environmental and Water Resources Engineering, School of Civil Engineering, VIT, Vellore, 632014, India.

Abstract

The textile industry is responsible for producing large volumes of wastewater that contain a wide variety of dye compounds. This poses a significant environmental hazard and risks harming both ecosystems and living organisms. This review study explores the advancements in adsorption research for dye removal, with a particular emphasis on the development of various adsorbents. The article provides detailed insights into the toxicity and classification of dyes, different treatment techniques, and the characteristics of numerous adsorbents, with special attention to layered double hydroxides (LDH) and clay minerals. A comprehensive list of adsorbents, encompassing natural materials, agricultural by-products, industrial waste, and activated carbon, is discussed for effective removal of different dyes. Furthermore, the review extensively examines the influence of various adsorption variables, such as pH, initial dye concentration, adsorbent dosage, temperature, contact time, ionic strength, and pore volume of the adsorbent. Additionally, the application of response surface methodology for optimizing adsorption variables is elucidated. Commonly, electrostatic attraction, ��-�� interactions, n-�� interactions, van der Waals forces, H-bonding, and pore diffusion play a major role in adsorption mechanism. The review also found that LDH can eliminate a wide range of dyes from wastewater, achieving excellent uptake capacities often exceeding 500 mg/g, with a removal efficiency of 99%. The Langmuir isotherm and pseudo-second-order kinetic equations gave the best fit to most of the adsorption data. Overall, this review serves as a valuable resource for researchers and practitioners seeking sustainable solutions to address the environmental challenges posed by textile dye contamination.

Keywords

References

  1. Dabrowski A (2001) Adsorption-from theory to practice. Adv Colloid Interface Sci 93:135���224 [DOI: 10.1016/S0001-8686(00)00082-8]
  2. Abid MF, Zablouk MA, Abid-alameer AM (2012) Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran J Environ Heal Sci Eng 9:1���9
  3. Ahmad MA, Puad NAA, Bello OS (2014) Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Resour Ind 8:18���35 [DOI: 10.1016/j.wri.2014.06.002]
  4. Aksu Z, Tezer S (2005) Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem 40:1347���1361. https://doi.org/10.1016/j.procbio.2004.06.007 [DOI: 10.1016/j.procbio.2004.06.007]
  5. Ali I, Asim M, Khan TA (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manage 113:170���183. https://doi.org/10.1016/j.jenvman.2012.08.028 [DOI: 10.1016/j.jenvman.2012.08.028]
  6. Aljeboree AM, Alshirifi AN, Alkaim AF (2018) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arab J Chem 120:261���271. https://doi.org/10.5004/dwt.2018.22747 [DOI: 10.5004/dwt.2018.22747]
  7. Allen SJ, Koumanova B (2005) Decolourisation of water/wastewater using adsorption (review). J Univ Chem Technol Metall 40:175���192
  8. Almoisheer N, Alseroury FA, Kumar R et al (2019) Adsorption and anion exchange insight of indigo carmine onto CuAl-LDH/SWCNTs nanocomposite: kinetic, thermodynamic and isotherm analysis. RSC Adv 9:560���568. https://doi.org/10.1039/C8RA09562K [DOI: 10.1039/C8RA09562K]
  9. Amin NK (2008) Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223:152���161. https://doi.org/10.1016/j.desal.2007.01.203 [DOI: 10.1016/j.desal.2007.01.203]
  10. Anirudhan TS, Ramachandran M (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Saf Environ Prot 95:215���225. https://doi.org/10.1016/j.psep.2015.03.003 [DOI: 10.1016/j.psep.2015.03.003]
  11. Anoop Krishnan K, Sini Suresh S, Arya S, Sreejalekshmi KG (2015) Adsorptive removal of 2,4-dinitrophenol using active carbon: kinetic and equilibrium modeling at solid���liquid interface. Desalin Water Treat 54:1850���1861. https://doi.org/10.1080/19443994.2014.890548 [DOI: 10.1080/19443994.2014.890548]
  12. Anoop Krishnan K, Sreejalekshmi KG, Dev VV et al (2017) Removal of Cu(II) from aqueous phase using tailor made sulfur-impregnated activated carbon inspired by claus process. Desalin Water Treat 80:214���222. https://doi.org/10.5004/dwt.2017.20964 [DOI: 10.5004/dwt.2017.20964]
  13. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS (2006) Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. J Hazard Mater 135:171���179. https://doi.org/10.1016/j.jhazmat.2005.11.044 [DOI: 10.1016/j.jhazmat.2005.11.044]
  14. Archana S, Jayanna BK, Ananda A, et al (2022) Numerical investigations of response surface methodology for organic dye adsorption onto Mg-Al LDH -GO Nano Hybrid : An optimization , kinetics and isothermal studies. J Indian Chem Soc 99:100249. https://doi.org/10.1016/j.jics.2021.100249
  15. Ardhayanti LI, Santosa SJ (2016) Synthesis of magnetite-Mg/Al hydrotalcite and its application as adsorbent for navy blue and yellow F3G dyes. Procedia Eng 148:1380���1387. https://doi.org/10.1016/j.proeng.2016.06.609 [DOI: 10.1016/j.proeng.2016.06.609]
  16. Asfaram A, Ghaedi M, Hajati S, Goudarzi A (2015) Ternary dye adsorption onto MnO2 nanoparticle-loaded activated carbon: derivative spectrophotometry and modeling. RSC Adv 5:72300���72320. https://doi.org/10.1039/c5ra10815b [DOI: 10.1039/c5ra10815b]
  17. Attallah OA, Al-ghobashy MA, Salem MY (2016) Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Adv 6:11461���11480. https://doi.org/10.1039/c5ra23452b [DOI: 10.1039/c5ra23452b]
  18. Auta M, Hameed BH (2012) Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chem Eng J 198���199:219���227. https://doi.org/10.1016/j.cej.2012.05.075 [DOI: 10.1016/j.cej.2012.05.075]
  19. Ayhan IS (2008) Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J Hazard Mater 154:613���622. https://doi.org/10.1016/j.jhazmat.2007.10.071 [DOI: 10.1016/j.jhazmat.2007.10.071]
  20. Babel S, Kurniawan TA (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J Hazard Mater 97:219���243. https://doi.org/10.1016/S0304-3894(02)00263-7 [DOI: 10.1016/S0304-3894(02)00263-7]
  21. Bagheban Shahri F, Niazi A (2015) Synthesis of modified maghemite nanoparticles and its application for removal of acridine orange from aqueous solutions by using Box-Behnken design. J Magn Magn Mater 396:318���326. https://doi.org/10.1016/j.jmmm.2015.08.054 [DOI: 10.1016/j.jmmm.2015.08.054]
  22. Bagheri AR, Ghaedi M, Asfaram A et al (2017) Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology. Ultrason Sonochem 34:294���304. https://doi.org/10.1016/j.ultsonch.2016.05.047 [DOI: 10.1016/j.ultsonch.2016.05.047]
  23. Bagheri AR, Ghaedi M, Asfaram A et al (2016) Modeling and optimization of simultaneous removal of ternary dyes onto copper sulfide nanoparticles loaded on activated carbon using second-derivative spectrophotometry. J Taiwan Inst Chem Eng 65:212���224. https://doi.org/10.1016/j.jtice.2016.05.004 [DOI: 10.1016/j.jtice.2016.05.004]
  24. Baroutian S, Aroua MK, Raman AAA, Sulaiman NMN (2011) A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresour Technol 102:1095���1102. https://doi.org/10.1016/j.biortech.2010.08.076 [DOI: 10.1016/j.biortech.2010.08.076]
  25. Bazrafshan AA, Hajati S, Ghaedi M (2015) Regenerable Zn(OH)2 nanoparticle-loaded activated carbon for the ultrasound-assisted removal of malachite green; optimization, isotherm and kinetics. RSC Adv 5:79119���79128. https://doi.org/10.1039/C5RA11742A [DOI: 10.1039/C5RA11742A]
  26. Behbahani M, Moghaddam MRA, Arami M (2011) Techno-economical evaluation of fluoride removal by electrocoagulation process: optimization through response surface methodology. Desalination 271:209���218. https://doi.org/10.1016/j.desal.2010.12.033 [DOI: 10.1016/j.desal.2010.12.033]
  27. Benselka-Hadj Abdelkader N, Bentouami A, Derriche Z et al (2011) Synthesis and characterization of Mg-Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution. Chem Eng J 169:231���238. https://doi.org/10.1016/j.cej.2011.03.019 [DOI: 10.1016/j.cej.2011.03.019]
  28. Bernard S, Chazal P, Mazet M (1997) Removal of organic compounds by adsorption on pyrolusite (��-MnO 2 ). Water Res 31:1216���1222. https://doi.org/10.1016/S0043-1354(96)00149-2 [DOI: 10.1016/S0043-1354(96)00149-2]
  29. Bharali D, Deka RC (2017) Solution over ternary CuMgAl layered double hydroxide. Colloids Surfaces A 525:64���76. https://doi.org/10.1016/j.colsurfa.2017.04.060 [DOI: 10.1016/j.colsurfa.2017.04.060]
  30. Bharali D, Deka RC (2018) Adsorptive removal of congo red from aqueous solution by sonochemically synthesized NiAl layered double hydroxide. J Environ Chem Eng 5:2056���2067 [DOI: 10.1016/j.jece.2017.04.012]
  31. Bilal M, Ihsanullah I, Hassan Shah MU et al (2022) Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J Environ Manage 321. https://doi.org/10.1016/j.jenvman.2022.115981
  32. Blaisi NI, Zubair M, Ihsanullah et al (2018) Date palm ash-MgAl-layered double hydroxide composite: sustainable adsorbent for effective removal of methyl orange and eriochrome black-T from aqueous phase. Environ Sci Pollut Res 25:34319���34331. https://doi.org/10.1007/s11356-018-3367-2 [DOI: 10.1007/s11356-018-3367-2]
  33. Boubakri S, Djebbi MA, Bouaziz Z et al (2018) Removal of two anionic reactive textile dyes by adsorption into MgAl-layered double hydroxide in aqueous solutions. Environ Sci Pollut Res 25:23817���23832. https://doi.org/10.1007/s11356-018-2391-6 [DOI: 10.1007/s11356-018-2391-6]
  34. Brahma D, Saikia H (2022) Synthesis of ZrO2/MgAl-LDH composites and evaluation of its isotherm, kinetics and thermodynamic properties in the adsorption of congo red dye. Chem Thermodyn Therm Anal 7. https://doi.org/10.1016/j.ctta.2022.100067
  35. Branton P, Bradley RH (2011) Effects of active carbon pore size distributions on adsorption of toxic organic compounds. 293���301. https://doi.org/10.1007/s10450-010-9284-4
  36. Bri��o GV, Jahn SL, Foletto EL, Dotto GL (2017) Adsorption of crystal violet dye onto a mesoporous ZSM-5 zeolite synthetized using chitin as template. J Colloid Interface Sci 508:313���322. https://doi.org/10.1016/j.jcis.2017.08.070 [DOI: 10.1016/j.jcis.2017.08.070]
  37. Cao Y, Li G, Li X (2016) Graphene/layered double hydroxide nanocomposite: properties, synthesis, and applications. Chem Eng J 292:207���223 [DOI: 10.1016/j.cej.2016.01.114]
  38. Chaari I, Moussi B, Jamoussi F (2015) Interactions of the dye, C.I. direct orange 34 with natural clay. J Alloys Compd 647:720���727. https://doi.org/10.1016/j.jallcom.2015.06.142 [DOI: 10.1016/j.jallcom.2015.06.142]
  39. Chac��n-Pati��o ML, Blanco-Tirado C, Hinestrozab JP, Combariza MY (2015) Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation. Green Chem 3:10715���10722. https://doi.org/10.1039/b000000x [DOI: 10.1039/b000000x]
  40. Chakraborty P, Nagarajan R (2015) Efficient adsorption of malachite green and Congo red dyes by the surfactant (DS) intercalated layered hydroxide containing Zn2+ and Y3+-ions. Appl Clay Sci 118:308���315. https://doi.org/10.1016/j.clay.2015.10.011 [DOI: 10.1016/j.clay.2015.10.011]
  41. Chandra S, Das P, Bag S et al (2012) Mn2 O3 decorated graphene nanosheet: an advanced material for the photocatalytic degradation of organic dyes. Mater Sci Eng B Solid-State Mater Adv Technol 177:855���861. https://doi.org/10.1016/j.mseb.2012.04.006 [DOI: 10.1016/j.mseb.2012.04.006]
  42. Chang M, Juang R (2004) Adsorption of tannic acid , humic acid , and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278:18���25. https://doi.org/10.1016/j.jcis.2004.05.029
  43. Chen D, Li Y, Zhang J et al (2012) Efficient removal of dyes by a novel magnetic Fe3O4/ZnCr-layered double hydroxide adsorbent from heavy metal wastewater. J Hazard Mater 243:152���160. https://doi.org/10.1016/j.jhazmat.2012.10.014 [DOI: 10.1016/j.jhazmat.2012.10.014]
  44. Chen F, Wu X, Bu R, Yang F (2017) Co-Fe hydrotalcites for efficient removal of dye pollutants: via synergistic adsorption and degradation. RSC Adv 7:41945���41954. https://doi.org/10.1039/c7ra07417d [DOI: 10.1039/c7ra07417d]
  45. Chen Z, Deng H, Chen C et al (2014) Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method. J Environ Heal Sci Eng 12:1���10. https://doi.org/10.1186/2052-336X-12-63 [DOI: 10.1186/2052-336X-12-63]
  46. Chinoune K, Bentaleb K, Bouberka Z et al (2016) Adsorption of reactive dyes from aqueous solution by dirty bentonite. Appl Clay Sci 123:64���75. https://doi.org/10.1016/j.clay.2016.01.006 [DOI: 10.1016/j.clay.2016.01.006]
  47. Chowdhury AN, Azam MS, Aktaruzzaman M, Rahim A (2009) Oxidative and antibacterial activity of Mn3O4. J Hazard Mater 172:1229���1235. https://doi.org/10.1016/j.jhazmat.2009.07.129 [DOI: 10.1016/j.jhazmat.2009.07.129]
  48. Damodar RA, Jagannathan K, Swaminathan T (2007) Decolourization of reactive dyes by thin film immobilized surface photoreactor using solar irradiation. Sol Energy 81:1���7. https://doi.org/10.1016/j.solener.2006.07.001 [DOI: 10.1016/j.solener.2006.07.001]
  49. Daniel M, De LG, Flores ED et al (2013) Adsorption of Eriochrome Black T ( EBT ) dye using activated carbon prepared from waste rice hulls���optimization, isotherm and kinetic studies. J Taiwan Inst Chem Eng 44:646���653 [DOI: 10.1016/j.jtice.2013.01.010]
  50. Das J, Das D, Parida KM (2006) Preparation and characterization of Mg ��� Al hydrotalcite-like compounds containing cerium. J Colloid Interface Sci 301:569���574. https://doi.org/10.1016/j.jcis.2006.05.014 [DOI: 10.1016/j.jcis.2006.05.014]
  51. Daud M, Kamal MS, Shehzad F, MAC A-H (2016) Graphene/layered double hydroxides nanocomposites: a review of recent progress in synthesis and applications. Carbon N Y 104:241���252. https://doi.org/10.1016/j.carbon.2016.03.057 [DOI: 10.1016/j.carbon.2016.03.057]
  52. Dawood S, Sen TK (2012) Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res 46:1933���1946. https://doi.org/10.1016/j.watres.2012.01.009 [DOI: 10.1016/j.watres.2012.01.009]
  53. Deniz F, Karaman S (2011) Removal of Basic Red 46 dye from aqueous solution by pine tree leaves. Chem Eng J 170:67���74. https://doi.org/10.1016/j.cej.2011.03.029 [DOI: 10.1016/j.cej.2011.03.029]
  54. Dev VV, Wilson B, Nair KK et al (2021) Response surface modeling of Orange-G adsorption onto surface tuned ragi husk. Colloids Interface Sci Commun 41. https://doi.org/10.1016/j.colcom.2021.100363
  55. dos Santos RMM, Gon��alves RGL, Constantino VRL et al (2013) Removal of Acid Green 68:1 from aqueous solutions by calcined and uncalcined layered double hydroxides. Appl Clay Sci 80���81:189���195. https://doi.org/10.1016/j.clay.2013.04.006 [DOI: 10.1016/j.clay.2013.04.006]
  56. Dos Santos VCG, De Souza JVTM, Tarley CRT et al (2011) Copper ions adsorption from aqueous medium using the biosorbent sugarcane bagasse in natura and chemically modified. Water, Air, Soil Pollut 216:351���359. https://doi.org/10.1007/s11270-010-0537-3 [DOI: 10.1007/s11270-010-0537-3]
  57. Dotto GL, Moura JM, Cadaval TRS, Pinto LAA (2013) Application of chitosan films for the removal of food dyes from aqueous solutions by adsorption. Chem Eng J 214:8���16. https://doi.org/10.1016/j.cej.2012.10.027 [DOI: 10.1016/j.cej.2012.10.027]
  58. Doulati Ardejani F, Badii K, Limaee NY et al (2008) Adsorption of Direct Red 80 dye from aqueous solution onto almond shells: effect of pH, initial concentration and shell type. J Hazard Mater 151:730���737. https://doi.org/10.1016/j.jhazmat.2007.06.048 [DOI: 10.1016/j.jhazmat.2007.06.048]
  59. Drici N, Jouini N, Derriche Z (2010) Sorption study of an anionic dye ��� benzopurpurine 4B ��� on calcined and uncalcined Mg ��� Al layered double hydroxides. J Phys Chem Solids 71:556���559. https://doi.org/10.1016/j.jpcs.2009.12.035 [DOI: 10.1016/j.jpcs.2009.12.035]
  60. Dulman V, Cucu-Man SM (2009) Sorption of some textile dyes by beech wood sawdust. J Hazard Mater 162:1457���1464. https://doi.org/10.1016/j.jhazmat.2008.06.046 [DOI: 10.1016/j.jhazmat.2008.06.046]
  61. Duran C, Ozdes D, Gundogdu A, Senturk HB (2011) Kinetics and isotherm analysis of basic dyes adsorption onto almond shell (Prunus dulcis) as a low cost adsorbent. J Chem Eng Data 56:2136���2147. https://doi.org/10.1021/je101204j [DOI: 10.1021/je101204j]
  62. Dutta S, Gupta B, Srivastava SK, Gupta AK (2021) Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv 2:4497���4531. https://doi.org/10.1039/d1ma00354b [DOI: 10.1039/d1ma00354b]
  63. Ealias AM, Saravanakumar MP (2018) Facile synthesis and characterisation of AlNs using protein rich solution extracted from sewage sludge and its application for ultrasonic assisted dye adsorption: isotherms, kinetics, mechanism and RSM design. J Environ Manage 206:215���227 [DOI: 10.1016/j.jenvman.2017.10.032]
  64. El-Sayed GO, Yehia MM, Asaad AA (2014) Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resour Ind 7���8:66���75. https://doi.org/10.1016/j.wri.2014.10.001 [DOI: 10.1016/j.wri.2014.10.001]
  65. El Hassani K, Beakou BH, Kalnina D et al (2017) Effect of morphological properties of layered double hydroxides on adsorption of azo dye Methyl Orange: a comparative study. Appl Clay Sci 140:124���131. https://doi.org/10.1016/j.clay.2017.02.010 [DOI: 10.1016/j.clay.2017.02.010]
  66. Elass K, Laachach A, Alaoui A, Azzi M (2011) Removal of methyl violet from aqueous solution using a stevensite-rich clay from Morocco. Appl Clay Sci 54:90���96. https://doi.org/10.1016/j.clay.2011.07.019 [DOI: 10.1016/j.clay.2011.07.019]
  67. Elmoubarki R, Mahjoubi FZ, Tounsadi H et al (2015) Adsorption of textile dyes on raw and decanted Moroccan clays: kinetics, equilibrium and thermodynamics. Water Resour Ind 9:16���29. https://doi.org/10.1016/j.wri.2014.11.001 [DOI: 10.1016/j.wri.2014.11.001]
  68. Extremera R, Pavlovic I, P��rez MR, Barriga C (2012) Removal of acid orange 10 by calcined Mg/Al layered double hydroxides from water and recovery of the adsorbed dye. Chem Eng J 213:392���400 [DOI: 10.1016/j.cej.2012.10.042]
  69. Fayazi M, Afzali D, Taher MA et al (2015) Removal of Safranin dye from aqueous solution using magnetic mesoporous clay: optimization study. J Mol Liq 212:675���685. https://doi.org/10.1016/j.molliq.2015.09.045 [DOI: 10.1016/j.molliq.2015.09.045]
  70. Fernandes AN, Almeida CAP, Debacher NA (2007) Removal of methylene blue from aqueous solution by peat. J Hazard Mater 144:412���419. https://doi.org/10.1016/j.jhazmat.2006.10.053 [DOI: 10.1016/j.jhazmat.2006.10.053]
  71. Ferrero F (2007) Dye removal by low cost adsorbents: hazelnut shells in comparison with wood sawdust. J Hazard Mater 142:144���152. https://doi.org/10.1016/j.jhazmat.2006.07.072 [DOI: 10.1016/j.jhazmat.2006.07.072]
  72. Foruzin LJ, Rezvani Z, Nejati K (2016) Fabrication of TiO2@ZnAl-layered double hydroxide based anode material for dye-sensitized solar cell. RSC Adv 6:10912���10918. https://doi.org/10.1039/c5ra23384d [DOI: 10.1039/c5ra23384d]
  73. Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385���471. https://doi.org/10.1515/zpch-1907-5723 [DOI: 10.1515/zpch-1907-5723]
  74. Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters : a review. Bioresour Technol 79:251���262 [DOI: 10.1016/S0960-8524(01)00028-1]
  75. Fugetsu B, Satoh S, Shiba T et al (2004) Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environ Sci Technol 38:6890���6896. https://doi.org/10.1021/es049554i [DOI: 10.1021/es049554i]
  76. Gaini LE, Lakraimi M, Sebbar E et al (2009) Removal of indigo carmine dye from water to Mg ��� Al ��� CO 3 -calcined layered double hydroxides. J Hazard Mater 161:627���632. https://doi.org/10.1016/j.jhazmat.2008.04.089 [DOI: 10.1016/j.jhazmat.2008.04.089]
  77. Garg V, Kumar R, Gupta R (2004) Removal of malachite green dye from aqueous solution by adsorption using agro-industry waste: a case study of Prosopis cineraria. Dyes Pigments 62 1-10. Dye Pigment 62:1���10. https://doi.org/10.1016/S0143-7208(03)00224-9 [DOI: 10.1016/S0143-7208(03)00224-9]
  78. Garg VK, Gupta R, Yadav AB, Kumar R (2003) Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour Technol 89:121���124. https://doi.org/10.1016/S0960-8524(03)00058-0 [DOI: 10.1016/S0960-8524(03)00058-0]
  79. Ge J, Qu J (2003) Degradation of azo dye acid red B on manganese dioxide in the absence and presence of ultrasonic irradiation. J Hazard Mater 100:197���207. https://doi.org/10.1016/S0304-3894(03)00105-5 [DOI: 10.1016/S0304-3894(03)00105-5]
  80. George G, Saravanakumar MP (2020) Fabrication and performance analysis of a low cost, Pt free counter electrode using carbon coated ZnAl layered double hydroxide (C/ZnAl-LDH ) for dye sensitized solar cells. Sol Energy 202:144���154. https://doi.org/10.1016/j.solener.2020.03.113 [DOI: 10.1016/j.solener.2020.03.113]
  81. George G, Saravanakumar MP (2018) Facile synthesis of carbon-coated layered double hydroxide and its comparative characterisation with Zn���Al LDH : application on crystal violet and malachite green dye adsorption ��� isotherm , kinetics and Box-Behnken design. Environ Sci Pollut Res 25:30236���30254 [DOI: 10.1007/s11356-018-3001-3]
  82. Ghalwa NA, Saqer AM, Farhat NB (2016) Removal of Reactive Red 24 dye by clean electrocoagulation process using iron and aluminum electrodes. J Chem Eng Process Technol 7:1���7. https://doi.org/10.4172/2157-7048.1000269 [DOI: 10.4172/2157-7048.1000269]
  83. Ghazali A, Shirani M, Semnani A et al (2018) Optimization of crystal violet adsorption onto date palm leaves as a potent biosorbent from aqueous solutions using response surface methodology and ant colony. J Environ Chem Eng 6:3942���3950. https://doi.org/10.1016/j.jece.2018.05.043 [DOI: 10.1016/j.jece.2018.05.043]
  84. Golder AK, Samanta AN, Ray S (2006) Anionic reactive dye removal from aqueous solution using a new adsorbent-sludge generated in removal of heavy metal by electrocoagulation. Chem Eng J 122:107���115. https://doi.org/10.1016/j.cej.2006.06.003 [DOI: 10.1016/j.cej.2006.06.003]
  85. Guo X, Yin P, Yang H (2018) Superb adsorption of organic dyes from aqueous solution on hierarchically porous composites constructed by ZnAl-LDH/Al(OH)3 nanosheets. Microporous Mesoporous Mater 259:123���133. https://doi.org/10.1016/j.micromeso.2017.10.003 [DOI: 10.1016/j.micromeso.2017.10.003]
  86. Guo Y, Zhu Z, Qiu Y, Zhao J (2013) Enhanced adsorption of acid brown 14 dye on calcined Mg/Fe layered double hydroxide with memory effect. Chem Eng J 219:69���77. https://doi.org/10.1016/j.cej.2012.12.084 [DOI: 10.1016/j.cej.2012.12.084]
  87. Haghshenas HF, Khodaii A, Khedmati M, Tapkin S (2015) A mathematical model for predicting stripping potential of hot mix asphalt. Constr Build Mater 75:488���495. https://doi.org/10.1016/j.conbuildmat.2014.11.041 [DOI: 10.1016/j.conbuildmat.2014.11.041]
  88. Hameed BH, El-Khaiary MI (2008) Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies. J Hazard Mater 154:237���244. https://doi.org/10.1016/j.jhazmat.2007.10.017 [DOI: 10.1016/j.jhazmat.2007.10.017]
  89. Han X, Niu X, Ma X (2012) Adsorption characteristics of methylene blue on poplar leaf in batch mode: equilibrium, kinetics and thermodynamics. Korean J Chem Eng 29:494���502. https://doi.org/10.1007/s11814-011-0211-5 [DOI: 10.1007/s11814-011-0211-5]
  90. Hasan M, Ahmad AL, Hameed BH (2008) Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chem Eng J 136:164���172. https://doi.org/10.1016/j.cej.2007.03.038 [DOI: 10.1016/j.cej.2007.03.038]
  91. Hazzaa R, Hussein M (2015) Adsorption of cationic dye from aqueous solution onto activated carbon prepared from olive stones. Environ Technol Innov 4:36���51 [DOI: 10.1016/j.eti.2015.04.002]
  92. Heibati B, Rodriguez-Couto S, Al-Ghouti MA et al (2015) Kinetics and thermodynamics of enhanced adsorption of the dye AR 18 using activated carbons prepared from walnut and poplar woods. J Mol Liq 208:99���105. https://doi.org/10.1016/j.molliq.2015.03.057 [DOI: 10.1016/j.molliq.2015.03.057]
  93. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451���465. https://doi.org/10.1016/S0032-9592(98)00112-5 [DOI: 10.1016/S0032-9592(98)00112-5]
  94. Huang G, Sun Y, Zhao C et al (2017a) Water���n-BuOH solvothermal synthesis of ZnAl���LDHs with different morphologies and its calcined product in efficient dyes removal. J Colloid Interface Sci 494:215���222. https://doi.org/10.1016/j.jcis.2017.01.079 [DOI: 10.1016/j.jcis.2017.01.079]
  95. Huang P, Liu J, Wei F et al (2017b) Size-selective adsorption of anionic dyes induced by the layer space in layered double hydroxide hollow microspheres. Mater Chem Front 1:1550���1555. https://doi.org/10.1039/c7qm00079k [DOI: 10.1039/c7qm00079k]
  96. Ibrahim S, Fatimah I, Ang HM, Wang S (2010) Adsorption of anionic dyes in aqueous solution using chemically modified barley straw. Water Sci Technol 62:1177���1182. https://doi.org/10.2166/wst.2010.388 [DOI: 10.2166/wst.2010.388]
  97. Ishikawa T, Matsumoto K, Kandori K, Nakayama T (2007) Anion-exchange and thermal change of layered zinc hydroxides formed in the presence of Al ( III ). Colloids Surfaces A Physicochem Eng Asp 293:135���145. https://doi.org/10.1016/j.colsurfa.2006.07.018 [DOI: 10.1016/j.colsurfa.2006.07.018]
  98. Issa AA, Al-Degs YS, Al-Ghouti MA, Olimat AAM (2014) Studying competitive sorption behavior of methylene blue and malachite green using multivariate calibration. Chem Eng J 240:554���564. https://doi.org/10.1016/j.cej.2013.10.084 [DOI: 10.1016/j.cej.2013.10.084]
  99. Jain S, Jayaram RV (2010) Removal of basic dyes from aqueous solution by low-cost adsorbent: wood apple shell (Feronia acidissima). Desalination 250:921���927. https://doi.org/10.1016/j.desal.2009.04.005 [DOI: 10.1016/j.desal.2009.04.005]
  100. Jano�� P, Buchtov�� H, R��znarov�� M (2003) Sorption of dyes from aqueous solutions onto fly ash. Water Res 37:4938���4944. https://doi.org/10.1016/j.watres.2003.08.011 [DOI: 10.1016/j.watres.2003.08.011]
  101. John B, Krishnan D, Sumayya S et al (2023) Lignocellulosic magnetic biochar with multiple functionality; a green chelating system for water purification. J Environ Chem Eng 11. https://doi.org/10.1016/j.jece.2023.110947
  102. Kamal H, El-Sayed AH, Mohamed MM et al (2014) Adsorption properties of PVA/PAA/clay composite hydrogel synthesized by gamma radiation and its application in removal of crystal violet dye from its aqueous solution. J Nucl Technol Appl Sci 2:523���537
  103. Karimifard S, Alavi Moghaddam MR (2018) Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci Total Environ 640���641:772���797. https://doi.org/10.1016/j.scitotenv.2018.05.355 [DOI: 10.1016/j.scitotenv.2018.05.355]
  104. Kaur J, Sarma AK, Jha MK, Gera P (2020) Rib shaped carbon catalyst derived from: Zea mays L. cob for ketalization of glycerol. RSC Adv 10:43334���43342. https://doi.org/10.1039/d0ra08203a [DOI: 10.1039/d0ra08203a]
  105. Khaled A, El NA, El-Sikaily A, Abdelwahab O (2009) Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies. J Hazard Mater 165:100���110. https://doi.org/10.1016/j.jhazmat.2008.09.122 [DOI: 10.1016/j.jhazmat.2008.09.122]
  106. Kim J, Bak GH, Yoo DY et al (2023) Functionalization of pine sawdust biochars with Mg/Al layered double hydroxides to enhance adsorption capacity of synthetic azo dyes: adsorption mechanisms and reusability. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e14142
  107. Konicki W, Sibera D, Narkiewicz U (2018) Adsorptive removal of cationic dye from aqueous solutions by ZnO/ZnMn2O4 nanocomposite. Sep Sci Technol 53:1295���1306. https://doi.org/10.1080/01496395.2018.1444054 [DOI: 10.1080/01496395.2018.1444054]
  108. Krishna RH, Chandraprabha MN, Samrat K et al (2023) Carbon nanotubes and graphene-based materials for adsorptive removal of metal ions ��� a review on surface functionalization and related adsorption mechanism. Appl Surf Sci Adv 16:100431. https://doi.org/10.1016/j.apsadv.2023.100431 [DOI: 10.1016/j.apsadv.2023.100431]
  109. Krishnan KA, Sreejalekshmi KG, Varghese S (2010) Adsorptive retention of citric acid onto activated carbon prepared from Havea braziliansis sawdust: kinetic and isotherm overview. Desalination 257:46���52. https://doi.org/10.1016/j.desal.2010.03.009 [DOI: 10.1016/j.desal.2010.03.009]
  110. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakademiens Handl 24:1���39. https://doi.org/10.17113/ftb.53.02.15.3790 [DOI: 10.17113/ftb.53.02.15.3790]
  111. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:25 [DOI: 10.1021/ja02268a002]
  112. Largitte L, Pasquier R (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109:495���504. https://doi.org/10.1016/j.cherd.2016.02.006 [DOI: 10.1016/j.cherd.2016.02.006]
  113. Laskar N, Kumar U (2018) Adsorption of crystal violet from wastewater by modified bambusa tulda. KSCE J Civ Eng 22:2755���2763. https://doi.org/10.1007/s12205-017-0473-5 [DOI: 10.1007/s12205-017-0473-5]
  114. Li F, Duan X (2006) Applications of layered double hydroxides. Struct Bond 119:193���223. https://doi.org/10.1007/430 [DOI: 10.1007/430]
  115. Li Y, Bi HY, Liang YQ et al (2019) A magnetic core-shell dodecyl sulfate intercalated layered double hydroxide nanocomposite for the adsorption of cationic and anionic organic dyes. Appl Clay Sci 183. https://doi.org/10.1016/j.clay.2019.105309
  116. Liang X, Zang Y, Xu Y et al (2013) Sorption of metal cations on layered double hydroxides. Colloids Surfaces A Physicochem Eng Asp 433:122���131 [DOI: 10.1016/j.colsurfa.2013.05.006]
  117. Liu H, Dong Y, Wang H, Liu Y (2010) Ammonium adsorption from aqueous solutions by strawberry leaf powder : Equilibrium , kinetics and effects of coexisting ions. Desalination 263:70���75. https://doi.org/10.1016/j.desal.2010.06.040
  118. Liu W, Yao C, Wang M et al (2012) Kinetics and thermodynamics characteristics of cationic yellow X-GL adsorption on attapulgite/rice hull-based activated carbon nanocomposites. Environ Prog Sustain Energy 33:1���8. https://doi.org/10.1002/ep.11680 [DOI: 10.1002/ep.11680]
  119. Liu Y (2009) Is the free energy change of adsorption correctly calculated? J Chem Eng Data 54:1981���1985. https://doi.org/10.1021/je800661q [DOI: 10.1021/je800661q]
  120. Long YL, Gang YJ, Peng JF, Jie YW (2016) Preparation and characterization of MWCNTs/LDHs nanohybrids for removal of Congo red from aqueous solution. Trans Nonferrous Met Soc China (English Ed) 26:2701���2710. https://doi.org/10.1016/S1003-6326(16)64398-4 [DOI: 10.1016/S1003-6326(16)64398-4]
  121. Lu L, Li J, Ng DHL et al (2017) Synthesis of novel hierarchically porous Fe 3 O 4 @MgAl���LDH magnetic microspheres and its superb adsorption properties of dye from water. J Ind Eng Chem 46:315���323. https://doi.org/10.1016/j.jiec.2016.10.045 [DOI: 10.1016/j.jiec.2016.10.045]
  122. Luo S, Duan L, Sun B et al (2015) Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate. Appl Catal B Environ 164:92���99. https://doi.org/10.1016/j.apcatb.2014.09.008 [DOI: 10.1016/j.apcatb.2014.09.008]
  123. Ma Q, Shen F, Lu X et al (2013) Studies on the adsorption behavior of methyl orange from dye wastewater onto activated clay. Desalin Water Treat 51:3700���3709. https://doi.org/10.1080/19443994.2013.782083 [DOI: 10.1080/19443994.2013.782083]
  124. Mahadevan H, Nimina PVM, Krishnan KA (2022) An environmental green approach for the effective removal of malachite green from estuarine waters using Pistacia vera L. shell-based active carbon. Sustain Water Resour Manag 8. https://doi.org/10.1007/s40899-022-00612-5
  125. Mashkoor F, Nasar A, Inamuddin AAM (2018) Exploring the reusability of synthetically contaminated wastewater containing crystal violet dye using tectona grandis sawdust as a very low-cost adsorbent. Sci Rep 8:1���16. https://doi.org/10.1038/s41598-018-26655-3 [DOI: 10.1038/s41598-018-26655-3]
  126. Milonji�� SK (2007) A consideration of the correct calculation of thermodynamic parameters of adsorption. J Serbian Chem Soc 72:1363���1367. https://doi.org/10.2298/JSC0712363M [DOI: 10.2298/JSC0712363M]
  127. Mishra G, Dash B, Pandey S (2018) Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials. Appl Clay Sci 153:172���186. https://doi.org/10.1016/j.clay.2017.12.021 [DOI: 10.1016/j.clay.2017.12.021]
  128. Mohamed F, Abukhadra MR, Shaban M (2018) Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci Total Environ 640���641:352���363. https://doi.org/10.1016/j.scitotenv.2018.05.316 [DOI: 10.1016/j.scitotenv.2018.05.316]
  129. Mohammad AKT, Abdulhameed AS, Jawad AH (2019) Box-Behnken design to optimize the synthesis of new crosslinked chitosan-glyoxal/TiO 2 nanocomposite: methyl orange adsorption and mechanism studies. Int J Biol Macromol 129:98���109. https://doi.org/10.1016/j.ijbiomac.2019.02.025 [DOI: 10.1016/j.ijbiomac.2019.02.025]
  130. Mu���azu ND, Jarrah N, Kazeem TS et al (2018) Bentonite-layered double hydroxide composite for enhanced aqueous adsorption of Eriochrome Black T. Appl Clay Sci 161:23���34. https://doi.org/10.1016/j.clay.2018.04.009 [DOI: 10.1016/j.clay.2018.04.009]
  131. Mustapha M, Derriche Z, Denoyel R et al (2011) Thermodynamical and structural insights of orange II adsorption by Mg R AlNO 3 layered double hydroxides. J Solid State Chem 184:1016���1024. https://doi.org/10.1016/j.jssc.2011.03.018 [DOI: 10.1016/j.jssc.2011.03.018]
  132. Namasivayam C, Yamuna RT, Arasi DJSE (2002) Removal of procion orange from wastewater by adsorption on waste red mud. Sep Sci Technol 37:2421���2431. https://doi.org/10.1081/SS-120003521 [DOI: 10.1081/SS-120003521]
  133. Nandi BK, Goswami A, Purkait MK (2009) Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Appl Clay Sci 42:583���590. https://doi.org/10.1016/j.clay.2008.03.015 [DOI: 10.1016/j.clay.2008.03.015]
  134. Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater���a review. Environ Sci Pollut Res 26:5333���5356. https://doi.org/10.1007/s11356-018-3990-y [DOI: 10.1007/s11356-018-3990-y]
  135. Natarajan E, Ponnaiah GP (2017) Optimization of process parameters for the decolorization of Reactive Blue 235 dye by barium alginate immobilized iron nanoparticles synthesized from aluminum industry waste. Environ Nanotechnology, Monit Manag 7:73���88. https://doi.org/10.1016/j.enmm.2017.01.002 [DOI: 10.1016/j.enmm.2017.01.002]
  136. Netpradit S, Thiravetyan P, Towprayoon S (2003) Application of ���waste��� metal hydroxide sludge for adsorption of azo reactive dyes. Water Res 37:763���772. https://doi.org/10.1016/S0043-1354(02)00375-5 [DOI: 10.1016/S0043-1354(02)00375-5]
  137. Ngulube T, Gumbo JR, Masindi V, Maity A (2017) An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review. J Environ Manage 191:35���57. https://doi.org/10.1016/j.jenvman.2016.12.031 [DOI: 10.1016/j.jenvman.2016.12.031]
  138. O. Redlich DLP (1958) A useful adsorption isotherm. J Phys Chem 63:1024 [DOI: 10.1021/j150576a611]
  139. Otero M, Rozada F, Calvo LF et al (2003) Elimination of organic water pollutants using adsorbents obtained from sewage sludge. Dye Pigment 57:55���65. https://doi.org/10.1016/S0143-7208(03)00005-6 [DOI: 10.1016/S0143-7208(03)00005-6]
  140. Ould Brahim I, Belmedani M, Belgacem A et al (2014) Discoloration of azo dye solutions by adsorption on activated carbon prepared from the cryogenic grinding of used tires. Chem Eng Trans 38:121���126. https://doi.org/10.3303/CET1438021 [DOI: 10.3303/CET1438021]
  141. Pavan FA, Lima EC, Dias SLP, Mazzocato AC (2008) Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J Hazard Mater 150:703���712. https://doi.org/10.1016/j.jhazmat.2007.05.023 [DOI: 10.1016/j.jhazmat.2007.05.023]
  142. Plerdsranoy P, Kaewsuwan D, Chanlek N, Utke R (2017) Effects of specific surface area and pore volume of activated carbon nanofibers on nanoconfinement and dehydrogenation of LiBH4. Int J Hydrogen Energy 42:6189���6201. https://doi.org/10.1016/j.ijhydene.2017.01.048 [DOI: 10.1016/j.ijhydene.2017.01.048]
  143. Porkodi K, Vasanth Kumar K (2007) Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: eosin yellow, malachite green and crystal violet single component systems. J Hazard Mater 143:311���327. https://doi.org/10.1016/j.jhazmat.2006.09.029 [DOI: 10.1016/j.jhazmat.2006.09.029]
  144. Prasanna SV, Kamath PV (2008) Chromate uptake characteristics of the pristine layered double hydroxides of Mg with Al. Solid State Sci 10:260���266. https://doi.org/10.1016/j.solidstatesciences.2007.09.023 [DOI: 10.1016/j.solidstatesciences.2007.09.023]
  145. Puasa SW, Ruzitah MS, Sharifah ASAK (2012) Competitive removal of Reactive Black 5/Reactive Orange 16 from aqueous solution via micellar-enhanced ultrafiltration. Int J Chem Eng Appl 3:354���358. https://doi.org/10.7763/IJCEA.2012.V3.217 [DOI: 10.7763/IJCEA.2012.V3.217]
  146. Qiao Y, Li Q, Chi H et al (2018) Methyl blue adsorption properties and bacteriostatic activities of Mg-Al layer oxides via a facile preparation method. Appl Clay Sci 163:119���128. https://doi.org/10.1016/j.clay.2018.07.018 [DOI: 10.1016/j.clay.2018.07.018]
  147. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70���80. https://doi.org/10.1016/j.jhazmat.2009.12.047 [DOI: 10.1016/j.jhazmat.2009.12.047]
  148. Rahaman H, Ghosh SK (2016) Soft-templated synthesis of Mn3O4 microdandelions for the degradation of alizarin red under visible light irradiation. RSC Adv 6:4531���4539. https://doi.org/10.1039/c5ra25935e [DOI: 10.1039/c5ra25935e]
  149. Rajumon R, Anand JC, Ealias AM et al (2019) Adsorption of textile dyes with ultrasonic assistance using green reduced graphene oxide: an in-depth investigation on sonochemical factors. J Environ Chem Eng 7:103479. https://doi.org/10.1016/j.jece.2019.103479 [DOI: 10.1016/j.jece.2019.103479]
  150. Ramesh M, Nagaraja HS, Rao MP et al (2016) Fabrication, characterization and catalytic activity of ��-MnO2 nanowires for dye degradation of reactive black 5. Mater Lett 172:85���89 [DOI: 10.1016/j.matlet.2016.02.076]
  151. Ribeiro C, Scheufele FB, Espinoza-Qui��ones FR et al (2015) Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye. Colloids Surfaces A Physicochem Eng Asp 482:693���701. https://doi.org/10.1016/j.colsurfa.2015.05.057 [DOI: 10.1016/j.colsurfa.2015.05.057]
  152. Robinson T, Mcmullan G, Marchant R, Nigam P (2001) Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol 77:247���255 [DOI: 10.1016/S0960-8524(00)00080-8]
  153. Roosta M, Ghaedi M, Yousefi F (2015) Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by zinc sulfide nanoparticles loaded on activated carbon: experimental design. RSC Adv 5:100129���100141. https://doi.org/10.1039/C5RA16121E [DOI: 10.1039/C5RA16121E]
  154. Ryu S, Jung H, Oh J et al (2010) Journal of Physics and Chemistry of Solids Layered double hydroxide as novel antibacterial drug delivery system. J Phys Chem Solids 71:685���688. https://doi.org/10.1016/j.jpcs.2009.12.066 [DOI: 10.1016/j.jpcs.2009.12.066]
  155. Sadegh H, Ali GAM, Gupta VK et al (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostructure Chem 7:1���14. https://doi.org/10.1007/s40097-017-0219-4 [DOI: 10.1007/s40097-017-0219-4]
  156. Salleh MAM, Mahmoud DK, Karim WAWA, Idris A (2011) Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280:1���13. https://doi.org/10.1016/j.desal.2011.07.019 [DOI: 10.1016/j.desal.2011.07.019]
  157. Samsami S, Mohamadi M, Sarrafzadeh MH et al (2020) Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf Environ Prot 143:138���163. https://doi.org/10.1016/j.psep.2020.05.034 [DOI: 10.1016/j.psep.2020.05.034]
  158. Samuei S, Zolfaghar Rezvani ARA-G (2014) Comparative study of removal of reactive dye by LDHs: the effect of cation variety. Environ Prog Sustain Energy 33:482���489. https://doi.org/10.1002/ep.12465 [DOI: 10.1002/ep.12465]
  159. Sartape AS, Mandhare AM, Jadhav VV et al (2017) Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple) shell as low cost adsorbent. Arab J Chem 10:3229���3238 [DOI: 10.1016/j.arabjc.2013.12.019]
  160. Schwantes D, Gon��alves AC, Coelho GF et al (2016) Chemical modifications of cassava peel as adsorbent material for metals ions from wastewater. J Chem 2016. https://doi.org/10.1155/2016/3694174
  161. Seftel EM, Popovici E, Mertens M, De WK (2008) Zn���Al layered double hydroxides: synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater 113:296���304. https://doi.org/10.1016/j.micromeso.2007.11.029 [DOI: 10.1016/j.micromeso.2007.11.029]
  162. Senthil Kumar P, Ramalingam S, Senthamarai C et al (2010) Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination 261:52���60. https://doi.org/10.1016/j.desal.2010.05.032 [DOI: 10.1016/j.desal.2010.05.032]
  163. Shan R, Yan L, Yang Y et al (2015) Highly efficient removal of three red dyes by adsorption onto Mg ��� Al-layered double hydroxide. J Ind Eng Chem 21:561���568 [DOI: 10.1016/j.jiec.2014.03.019]
  164. Shan RR, Yan LG, Yang K et al (2014) Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution. Chem Eng J 252:38���46. https://doi.org/10.1016/j.cej.2014.04.105 [DOI: 10.1016/j.cej.2014.04.105]
  165. Sharma YC, Uma (2010) Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon. J Chem Eng Data 55:435���439. https://doi.org/10.1021/je900408s [DOI: 10.1021/je900408s]
  166. Sips R (1948) On the Structure of a Catalyst Surface. J Chem Phys 16:490���495. https://doi.org/10.1063/1.1746922 [DOI: 10.1063/1.1746922]
  167. Sreekanth TVM, Basivi PK, Nagajyothi PC et al (2018) Determination of surface properties and Gutmann���s Lewis acidity���basicity parameters of thiourea and melamine polymerized graphitic carbon nitride sheets by inverse gas chromatography. J Chromatogr A 1580:134���141. https://doi.org/10.1016/j.chroma.2018.10.042 [DOI: 10.1016/j.chroma.2018.10.042]
  168. Sui N, Duan Y, Jiao X, Chen D (2009) Large-scale preparation and catalytic properties of one-dimensional ��-MnO2 nanostructures. J Phys Chem C 113:8560���8565 [DOI: 10.1021/jp810452k]
  169. Suteu D, Bilba D (2005) Equilibrium and kinetic study of reactive dye Brilliant Red HE-3B adsorption by activated charcoal. Acta Chim Slov 52:73���79
  170. Tan KB, Vakili M, Horri BA et al (2015) Adsorption of dyes by nanomaterials: recent developments and adsorption mechanisms. Sep Purif Technol 150:229���242. https://doi.org/10.1016/j.seppur.2015.07.009 [DOI: 10.1016/j.seppur.2015.07.009]
  171. Tan X, Liu Y, Gu Y et al (2016) Biochar pyrolyzed from MgAl-layered double hydroxides pre-coated ramie biomass (Boehmeria nivea (L.) Gaud.): characterization and application for crystal violet removal. J Environ Manage 184:85���93 [DOI: 10.1016/j.jenvman.2016.08.070]
  172. Temkin MI, Pyozhev V (1940) Kinetics of ammonia synthesis on the promoted iron catalyst. Acta Phys Chim USSR 12:327���356
  173. Thinakaran N, Panneerselvam P, Baskaralingam P et al (2008) Equilibrium and kinetic studies on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells. J Hazard Mater 158:142���150. https://doi.org/10.1016/j.jhazmat.2008.01.043 [DOI: 10.1016/j.jhazmat.2008.01.043]
  174. Tong DS, Liu M, Li L et al (2012) Transformation of alunite residuals into layered double hydroxides and oxides for adsorption of acid red G dye. Appl Clay Sci 70:1���7. https://doi.org/10.1016/j.clay.2012.08.001 [DOI: 10.1016/j.clay.2012.08.001]
  175. Walter J, Weber JCM (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31���59
  176. Wang L, Wang A (2007) Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite. J Hazard Mater 147:979���985. https://doi.org/10.1016/j.jhazmat.2007.01.145 [DOI: 10.1016/j.jhazmat.2007.01.145]
  177. Wang S, Boyjoo Y, Choueib A, Zhu ZH (2005) Removal of dyes from aqueous solution using fly ash and red mud. Water Res 39:129���138. https://doi.org/10.1016/j.watres.2004.09.011 [DOI: 10.1016/j.watres.2004.09.011]
  178. Wang SL, Hseu RJ, Chang RR et al (2006) Adsorption and thermal desorption of Cr (VI) on Li/Al layered double hydroxide. Colloids Surfaces A Physicochem Eng Asp 277:8���14. https://doi.org/10.1016/j.colsurfa.2005.10.073 [DOI: 10.1016/j.colsurfa.2005.10.073]
  179. Wu P, Wu T, He W et al (2013) Adsorption properties of dodecylsulfate-intercalated layered double hydroxide for various dyes in water. Colloids Surfaces A Physicochem Eng Asp 436:726���731. https://doi.org/10.1016/j.colsurfa.2013.08.015 [DOI: 10.1016/j.colsurfa.2013.08.015]
  180. Wu R, Qu J, Chen Y (2005) Magnetic powder MnO-Fe2O3 composite - a novel material for the removal of azo-dye from water. Water Res 39:630���638. https://doi.org/10.1016/j.watres.2004.11.005 [DOI: 10.1016/j.watres.2004.11.005]
  181. Xu L, Li X, Ma J et al (2014) Nano-MnOx on activated carbon prepared by hydrothermal process for fast and highly efficient degradation of azo dyes. Appl Catal A Gen 485:91���98. https://doi.org/10.1016/j.apcata.2014.07.041 [DOI: 10.1016/j.apcata.2014.07.041]
  182. Yadav S, Tyagi DK, Yadav OP (2012) An overview of effluent treatment for the removal of pollutant dyes. Asian J Res Chem 5:4169
  183. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172���184. https://doi.org/10.1016/j.cis.2014.04.002 [DOI: 10.1016/j.cis.2014.04.002]
  184. Yagub MT, Sen TK, Ang HM (2012) Equilibrium, kinetics, and thermodynamics of methylene blue adsorption by pine tree leaves. Water Air Soil Pollut 223:5267���5282. https://doi.org/10.1007/s11270-012-1277-3 [DOI: 10.1007/s11270-012-1277-3]
  185. Yang S, Wang L, Zhang X et al (2015) Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor. Chem Eng J 275:315���321 [DOI: 10.1016/j.cej.2015.04.049]
  186. Yang Z, Wang F, Zhang C et al (2016) Utilization of LDH-based materials as potential adsorbents and photocatalysts for the decontamination of dyes wastewater: a review. RSC Adv 6:79415���79436. https://doi.org/10.1039/c6ra12727d [DOI: 10.1039/c6ra12727d]
  187. Yasin Y, Hussein MZ, Ahmad FH (2007) Adsorption of methylene blue onto treated activated carbon. Malaysian J Anal Sci 11:400���406
  188. Youssef AMAM, Al-Awadhi MM (2013) Adsorption of acid dyes onto bentonite and surfactant-modified bentonite. J Anal Bioanal Tech 04. https://doi.org/10.4172/2155-9872.1000174
  189. Zahra F, Khalidi A, Abdennouri M et al (2017) Zn���Al layered double hydroxides intercalated with carbonate, nitrate, chloride and sulphate ions: synthesis, characterisation and dye removal properties. J Taibah Univ Sci 11:90���100. https://doi.org/10.1016/j.jtusci.2015.10.007 [DOI: 10.1016/j.jtusci.2015.10.007]
  190. Zhang B, Luan L, Gao R et al (2017) Rapid and effective removal of Cr (VI) from aqueous solution using exfoliated LDH nanosheets. Colloids Surfaces A Physicochem Eng Asp 520:399���408 [DOI: 10.1016/j.colsurfa.2017.01.074]
  191. Zhang J, Zhou Q, Ou L (2011) Kinetic, isotherm, and thermodynamic studies of the adsorption of methyl orange from aqueous solution by chitosan/alumina composite. J Chem Eng Data 77:412���419. https://doi.org/10.2166/wst.2018.229 [DOI: 10.2166/wst.2018.229]
  192. Zhang L, Li L, Sun X et al (2016) ZnO-layered double hydroxide@graphitic carbon nitride composite for consecutive adsorption and photodegradation of dyes under UV and visible lights. Materials (Basel) 9. https://doi.org/10.3390/ma9110927
  193. Zhang L, Liu J, Xiao H et al (2014a) Preparation and properties of mixed metal oxides based layered double hydroxide as anode materials for dye-sensitized solar cell. Chem Eng J 250:1���5. https://doi.org/10.1016/j.cej.2014.03.098 [DOI: 10.1016/j.cej.2014.03.098]
  194. Zhang M, Yao Q, Lu C et al (2014b) Layered double hydroxide ��� carbon dot composite: high-performance adsorbent for removal of anionic organic dye. ACS Appl Mater Interfaces 6:20225���20233. https://doi.org/10.1021/am505765e [DOI: 10.1021/am505765e]
  195. Zheng Y, Li N, Zhang W (2012) Preparation of nanostructured microspheres of Zn ��� Mg ��� Al layered double hydroxides with high adsorption property. Colloids Surfaces A Physicochem Eng Asp 415:195���201. https://doi.org/10.1016/j.colsurfa.2012.10.014 [DOI: 10.1016/j.colsurfa.2012.10.014]
  196. Zhou Q, Chen F, Wu W et al (2016) Reactive Orange 5 removal from aqueous solution using hydroxyl ammonium ionic liquids/layered double hydroxides intercalation composites. Chem Eng J 285:198���206. https://doi.org/10.1016/j.cej.2015.10.004 [DOI: 10.1016/j.cej.2015.10.004]
  197. Zubair M, Daud M, Mckay G et al (2017a) Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl Clay Sci 143:279���292 [DOI: 10.1016/j.clay.2017.04.002]
  198. Zubair M, Jarrah N, Manzar MS et al (2017b) Adsorption of eriochrome black T from aqueous phase on MgAl-, CoAl- and NiFe- calcined layered double hydroxides: kinetic, equilibrium and thermodynamic studies. J Mol Liq 230:344���352. https://doi.org/10.1016/j.molliq.2017.01.031 [DOI: 10.1016/j.molliq.2017.01.031]

MeSH Term

Wastewater
Clay
Ecosystem
Hydroxides
Coloring Agents
Minerals
Textiles
Adsorption
Water Pollutants, Chemical
Kinetics
Hydrogen-Ion Concentration

Chemicals

Wastewater
Clay
Hydroxides
Coloring Agents
Minerals
Water Pollutants, Chemical

Word Cloud

Created with Highcharts 10.0.0adsorptiondyereviewadsorbentsdyestextileremovaldoublehydroxideswastewaterwideenvironmentalvariousdifferenttreatmentlayeredLDHclaymineralsvariablesadsorbentporeinteractionsindustryresponsibleproducinglargevolumescontainvarietycompoundsposessignificanthazardrisksharmingecosystemslivingorganismsstudyexploresadvancementsresearchparticularemphasisdevelopmentarticleprovidesdetailedinsightstoxicityclassificationtechniquescharacteristicsnumerousspecialattentioncomprehensivelistencompassingnaturalmaterialsagriculturalby-productsindustrialwasteactivatedcarbondiscussedeffectiveFurthermoreextensivelyexaminesinfluencepHinitialconcentrationdosagetemperaturecontacttimeionicstrengthvolumeAdditionallyapplicationresponsesurfacemethodologyoptimizingelucidatedCommonlyelectrostaticattraction��-��n-��vanderWaalsforcesH-bondingdiffusionplaymajorrolemechanismalsofoundcaneliminaterangeachievingexcellentuptakecapacitiesoftenexceeding500mg/gefficiency99%Langmuirisothermpseudo-second-orderkineticequationsgavebestfitdataOverallservesvaluableresourceresearcherspractitionersseekingsustainablesolutionsaddresschallengesposedcontaminationAdvancementsremoval:criticalefficientDyeIsothermkineticsLayeredTextileWastewater

Similar Articles

Cited By (2)