Piezo-enhanced near infrared photocatalytic nanoheterojunction integrated injectable biopolymer hydrogel for anti-osteosarcoma and osteogenesis combination therapy.

Cairong Xiao, Renxian Wang, Rumin Fu, Peng Yu, Jianxun Guo, Guangping Li, Zhengao Wang, Honggang Wang, Jingjun Nie, Weifeng Liu, Jinxia Zhai, Changhao Li, Chunlin Deng, Dafu Chen, Lei Zhou, Chengyun Ning
Author Information
  1. Cairong Xiao: School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.
  2. Renxian Wang: Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
  3. Rumin Fu: School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.
  4. Peng Yu: School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.
  5. Jianxun Guo: Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
  6. Guangping Li: Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
  7. Zhengao Wang: School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.
  8. Honggang Wang: Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
  9. Jingjun Nie: Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
  10. Weifeng Liu: Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, 100035, China.
  11. Jinxia Zhai: School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.
  12. Changhao Li: Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Key Laboratory of Stomatology, Guangzhou, Guangdong, 510055, China.
  13. Chunlin Deng: School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.
  14. Dafu Chen: Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
  15. Lei Zhou: Guangzhou Key Laboratory of Spine Disease Prevention and Treatment, Department of Spine Surgery, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
  16. Chengyun Ning: School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510641, China.

Abstract

Preventing local tumor recurrence while promoting bone tissue regeneration is an urgent need for osteosarcoma treatment. However, the therapeutic efficacy of traditional photosensitizers is limited, and they lack the ability to regenerate bone. Here, a piezo-photo nanoheterostructure is developed based on ultrasmall bismuth/strontium titanate nanocubes (denoted as Bi/SrTiO), which achieve piezoelectric field-driven fast charge separation coupling with surface plasmon resonance to efficiently generate reactive oxygen species. These hybrid nanotherapeutics are integrated into injectable biopolymer hydrogels, which exhibit outstanding anticancer effects under the combined irradiation of NIR and ultrasound. studies using patient-derived xenograft models and tibial osteosarcoma models demonstrate that the hydrogels achieve tumor suppression with efficacy rates of 98.6 % and 67.6 % in the respective models. Furthermore, the hydrogel had good filling and retention capabilities in the bone defect region, which exerted bone repair therapeutic efficacy by polarizing and conveying electrical stimuli to the cells under mild ultrasound radiation. This study provides a comprehensive and clinically feasible strategy for the overall treatment and tissue regeneration of osteosarcoma.

Keywords

References

  1. Cell. 2021 Apr 15;184(8):1971-1989 [PMID: 33826908]
  2. Nat Rev Cancer. 2014 Nov;14(11):722-35 [PMID: 25319867]
  3. Int J Mol Sci. 2020 Sep 23;21(19): [PMID: 32977425]
  4. ACS Cent Sci. 2019 Mar 27;5(3):440-450 [PMID: 30937371]
  5. Chem Rev. 2021 Sep 22;121(18):11149-11193 [PMID: 34189903]
  6. Nat Rev Clin Oncol. 2020 Nov;17(11):657-674 [PMID: 32699309]
  7. Semin Cancer Biol. 2019 Dec;59:147-160 [PMID: 31128298]
  8. Cell. 2020 Apr 30;181(3):716-727.e11 [PMID: 32259488]
  9. Cell Metab. 2021 May 4;33(5):1013-1026.e6 [PMID: 33609439]
  10. J Control Release. 2022 Jan;341:147-165 [PMID: 34813880]
  11. Nat Rev Mol Cell Biol. 2020 Nov;21(11):696-711 [PMID: 32901139]
  12. Adv Sci (Weinh). 2016 Feb 25;3(7):1500358 [PMID: 27812477]
  13. J Clin Oncol. 2015 Sep 20;33(27):3029-35 [PMID: 26304877]
  14. Nature. 2016 Apr 7;532(7597):112-6 [PMID: 27027295]
  15. Histopathology. 2014 Jan;64(1):2-11 [PMID: 24164390]
  16. Biomaterials. 2013 Jan;34(1):64-77 [PMID: 23069715]
  17. Adv Sci (Weinh). 2021 Aug;8(15):e2002211 [PMID: 34145798]
  18. Ann Oncol. 2010 Oct;21 Suppl 7:vii320-5 [PMID: 20943636]
  19. Angew Chem Int Ed Engl. 2022 Feb 1;61(6):e202110429 [PMID: 34612568]
  20. J Control Release. 2021 Apr 10;332:608-619 [PMID: 33675879]
  21. Biomaterials. 2022 Dec;291:121875 [PMID: 36335717]
  22. Int J Radiat Oncol Biol Phys. 1984 Feb;10(2):289-95 [PMID: 6368492]
  23. ACS Nano. 2015 Mar 24;9(3):2584-99 [PMID: 25692960]
  24. Chem Rev. 2021 Nov 10;121(21):13454-13619 [PMID: 34582186]
  25. Nat Rev Clin Oncol. 2021 Oct;18(10):609-624 [PMID: 34131316]
  26. Small. 2017 Dec;13(48): [PMID: 29094517]
  27. Nat Rev Mater. 2016 Dec;1(12): [PMID: 29657852]
  28. ACS Nano. 2022 Dec 27;16(12):20770-20785 [PMID: 36412574]
  29. Cancer Res. 1986 Feb;46(2):474-82 [PMID: 3510074]
  30. Biomaterials. 2020 Apr 28;251:120075 [PMID: 32388168]
  31. Mater Horiz. 2021 Aug 1;8(8):2273-2285 [PMID: 34846431]
  32. Chem Soc Rev. 2019 Feb 18;48(4):1194-1228 [PMID: 30663742]
  33. J Control Release. 2019 Oct;311-312:301-318 [PMID: 31446084]
  34. Adv Mater. 2022 Jul;34(29):e2202508 [PMID: 35560713]
  35. Sci Total Environ. 2021 Jan 1;750:141638 [PMID: 32858297]
  36. Biomacromolecules. 2016 Jun 13;17(6):2087-95 [PMID: 27253735]
  37. Small. 2009 Mar;5(6):750-7 [PMID: 19306465]
  38. Bone. 2022 Apr;157:116346 [PMID: 35114427]
  39. Chem Soc Rev. 2023 Mar 20;52(6):2031-2081 [PMID: 36633202]
  40. Angew Chem Int Ed Engl. 2021 Jun 7;60(24):13158-13176 [PMID: 33145879]
  41. SICOT J. 2018;4:12 [PMID: 29629690]
  42. Annu Rev Food Sci Technol. 2015;6:527-57 [PMID: 25884286]
  43. Adv Mater. 2021 Dec;33(51):e2106308 [PMID: 34642997]
  44. Carbohydr Polym. 2022 Jun 15;286:119305 [PMID: 35337491]
  45. Angew Chem Int Ed Engl. 2022 Nov 2;61(44):e202210700 [PMID: 36098495]
  46. ACS Nano. 2022 Aug 23;16(8):12118-12133 [PMID: 35904186]
  47. Cancer Causes Control. 2015 Aug;26(8):1127-39 [PMID: 26054913]
  48. Adv Sci (Weinh). 2022 May;9(13):e2105586 [PMID: 35253394]
  49. J Natl Cancer Inst. 2000 Feb 2;92(3):205-16 [PMID: 10655437]
  50. Nat Mater. 2013 May;12(5):458-65 [PMID: 23524375]
  51. Bioact Mater. 2021 May 14;6(12):4542-4557 [PMID: 34027239]
  52. Methods Mol Biol. 2012;810:183-205 [PMID: 22057568]
  53. Biomaterials. 2007 Jan;28(2):134-46 [PMID: 17011028]
  54. ACS Nano. 2015 May 26;9(5):4686-97 [PMID: 25938172]
  55. Drug Deliv. 2022 Dec;29(1):1631-1647 [PMID: 35612368]

Word Cloud

Created with Highcharts 10.0.0boneosteosarcomaefficacymodelstumortissueregenerationtreatmenttherapeuticachieveplasmonresonanceintegratedinjectablebiopolymerhydrogelsultrasound6 %hydrogelPiezo-enhancedPreventinglocalrecurrencepromotingurgentneedHowevertraditionalphotosensitizerslimitedlackabilityregeneratepiezo-photonanoheterostructuredevelopedbasedultrasmallbismuth/strontiumtitanatenanocubesdenotedBi/SrTiOpiezoelectricfield-drivenfastchargeseparationcouplingsurfaceefficientlygeneratereactiveoxygenspecieshybridnanotherapeuticsexhibitoutstandinganticancereffectscombinedirradiationNIRstudiesusingpatient-derivedxenografttibialdemonstratesuppressionrates9867respectiveFurthermoregoodfillingretentioncapabilitiesdefectregionexertedrepairpolarizingconveyingelectricalstimulicellsmildradiationstudyprovidescomprehensiveclinicallyfeasiblestrategyoverallnearinfraredphotocatalyticnanoheterojunctionanti-osteosarcomaosteogenesiscombinationtherapyAnti-osteosarcomaOsteogenesisphotodynamicPiezoelectricstimulationSurface

Similar Articles

Cited By