Toward grouped-reservoir computing: organic neuromorphic vertical transistor with distributed reservoir states for efficient recognition and prediction.

Changsong Gao, Di Liu, Chenhui Xu, Weidong Xie, Xianghong Zhang, Junhua Bai, Zhixian Lin, Cheng Zhang, Yuanyuan Hu, Tailiang Guo, Huipeng Chen
Author Information
  1. Changsong Gao: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, 350002, Fuzhou, China.
  2. Di Liu: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, 350002, Fuzhou, China.
  3. Chenhui Xu: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, 350002, Fuzhou, China.
  4. Weidong Xie: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, 350002, Fuzhou, China.
  5. Xianghong Zhang: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, 350002, Fuzhou, China. ORCID
  6. Junhua Bai: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China.
  7. Zhixian Lin: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, 350002, Fuzhou, China.
  8. Cheng Zhang: Department of Physics, Fuzhou University, 350108, Fuzhou, China.
  9. Yuanyuan Hu: Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, 410082, Changsha, China. ORCID
  10. Tailiang Guo: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, 350002, Fuzhou, China.
  11. Huipeng Chen: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, 350002, Fuzhou, China. hpchen@fzu.edu.cn. ORCID

Abstract

Reservoir computing has attracted considerable attention due to its low training cost. However, existing neuromorphic hardware, focusing mainly on shallow-reservoir computing, faces challenges in providing adequate spatial and temporal scales characteristic for effective computing. Here, we report an ultra-short channel organic neuromorphic vertical transistor with distributed reservoir states. The carrier dynamics used to map signals are enriched by coupled multivariate physics mechanisms, while the vertical architecture employed greatly increases the feedback intensity of the device. Consequently, the device as a reservoir, effectively mapping sequential signals into distributed reservoir state space with 1152 reservoir states, and the range ratio of temporal and spatial characteristics can simultaneously reach 2640 and 650, respectively. The grouped-reservoir computing based on the device can simultaneously adapt to different spatiotemporal task, achieving recognition accuracy over 94% and prediction correlation over 95%. This work proposes a new strategy for developing high-performance reservoir computing networks.

References

  1. Nat Commun. 2022 Mar 31;13(1):1707 [PMID: 35361828]
  2. Nat Rev Neurosci. 2015 Aug;16(8):487-97 [PMID: 26152865]
  3. Nat Commun. 2017 Dec 19;8(1):2204 [PMID: 29259188]
  4. Adv Sci (Weinh). 2017 Jun 04;4(8):1700007 [PMID: 28852619]
  5. Nat Commun. 2020 Nov 23;11(1):5934 [PMID: 33230113]
  6. Nat Commun. 2020 Jan 2;11(1):51 [PMID: 31896758]
  7. Nat Commun. 2023 Jan 28;14(1):468 [PMID: 36709349]
  8. Phys Rev Lett. 2004 Aug 20;93(8):086602 [PMID: 15447211]
  9. Nat Commun. 2018 Nov 30;9(1):5106 [PMID: 30504804]
  10. Science. 1988 May 6;240(4853):740-9 [PMID: 3283936]
  11. Nat Commun. 2022 Nov 3;13(1):6590 [PMID: 36329017]
  12. Nat Commun. 2021 Jan 18;12(1):408 [PMID: 33462233]
  13. Adv Mater. 2022 Dec;34(48):e2108826 [PMID: 35064981]
  14. Neuroimage. 1999 Feb;9(2):195-207 [PMID: 9931269]
  15. Adv Mater. 2018 Nov;30(44):e1803655 [PMID: 30589469]
  16. Nat Commun. 2023 Apr 15;14(1):2169 [PMID: 37061543]
  17. Nat Commun. 2011 Sep 13;2:468 [PMID: 21915110]
  18. ACS Nano. 2023 Apr 25;17(8):7695-7704 [PMID: 37014204]
  19. Nano Lett. 2020 May 13;20(5):3585-3592 [PMID: 32343583]
  20. Nat Commun. 2022 May 24;13(1):2898 [PMID: 35610215]
  21. Adv Mater. 2018 Sep;30(38):e1802883 [PMID: 30063261]
  22. Nano Lett. 2012 Sep 12;12(9):4729-33 [PMID: 22934789]
  23. ACS Appl Mater Interfaces. 2020 Apr 1;12(13):15370-15379 [PMID: 32153180]
  24. Nanoscale. 2022 Jan 6;14(2):289-298 [PMID: 34932057]
  25. Sci Adv. 2021 May 14;7(20): [PMID: 33990331]
  26. Cell. 2017 Jun 1;169(6):1013-1028.e14 [PMID: 28575666]
  27. Nat Commun. 2023 Mar 22;14(1):1579 [PMID: 36949063]
  28. Nat Commun. 2023 Jun 16;14(1):3585 [PMID: 37328514]
  29. Nat Commun. 2021 Feb 18;12(1):1120 [PMID: 33602925]
  30. Adv Mater. 2019 Nov;31(48):e1905018 [PMID: 31583770]

Word Cloud

Created with Highcharts 10.0.0reservoircomputingneuromorphicverticaldistributedstatesdevicespatialtemporalorganictransistorsignalscansimultaneouslygrouped-reservoirrecognitionpredictionReservoirattractedconsiderableattentionduelowtrainingcostHoweverexistinghardwarefocusingmainlyshallow-reservoirfaceschallengesprovidingadequatescalescharacteristiceffectivereportultra-shortchannelcarrierdynamicsusedmapenrichedcoupledmultivariatephysicsmechanismsarchitectureemployedgreatlyincreasesfeedbackintensityConsequentlyeffectivelymappingsequentialstatespace1152rangeratiocharacteristicsreach2640650respectivelybasedadaptdifferentspatiotemporaltaskachievingaccuracy94%correlation95%workproposesnewstrategydevelopinghigh-performancenetworksTowardcomputing:efficient

Similar Articles

Cited By (2)