Application of a new MDCKII-MDR1 cell model to measure the extent of drug distribution in vitro at equilibrium for prediction of in vivo unbound brain-to-plasma drug distribution.

Kristine Langthaler, Christopher R Jones, Lasse Saaby, Christoffer Bundgaard, Birger Brodin
Author Information
  1. Kristine Langthaler: Translational DMPK, H. Lundbeck A/S, and CNS Drug Delivery and Barrier Modelling, University of Copenhagen, Ottiliavej 9, Valby, 2500, Copenhagen, Denmark. KRIE@lundbeck.com.
  2. Christopher R Jones: PKPD Modelling & Simulation, H. Lundbeck A/S, Ottiliavej 9, Valby, 2500, Copenhagen, Denmark.
  3. Lasse Saaby: Bioneer A/S and affiliated associate professor at CNS Drug Delivery and Barrier Modelling, Universitetsparken 2, 2100, Copenhagen, Denmark.
  4. Christoffer Bundgaard: Translational DMPK, H. Lundbeck A/S, Ottiliavej 9, Valby, 2500, Copenhagen, Denmark.
  5. Birger Brodin: CNS Drug Delivery and Barrier Modelling, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.

Abstract

INTRO: Reliable estimates of drug uptake from blood to brain parenchyma are crucial in CNS drug discovery and development. While in vivo K estimates are the gold standard for investigating brain drug disposition, animal usage is a limitation to high throughput application. This study investigates an in vitro model using P-gp expressing MDCKII-MDR1 cells for predicting in vivo brain drug penetration.
METHODS: In vitro equilibrium distribution studies were conducted in apical and basolateral solutions with high protein content to estimate K and K values. The correlation between in vitro and in vivo K values for a set of compounds was examined.
RESULTS: We observed a good correlation between in vitro and in vivo K values (R���=���0.69, Slope: 1.6), indicating that the in vitro model could predict in vivo drug brain penetration. The 'unilateral (Uni-L)' in vitro setup correctly classified 5 out of 5 unrestricted compounds and 3 out of 5 restricted compounds. Possible reasons for the observed disparities for some compounds have been discussed, such as difference in transport areas between in vitro and in vivo settings and effect of pH changes.
CONCLUSION: The in vitro assay setup developed in this study holds promise for predicting in vivo drug brain penetration in CNS drug discovery. The correlation between in vitro and in vivo K values, underscores that the model may have potential for early-stage screening. With minor refinements, this in vitro approach could reduce the reliance on in vivo experiments, accelerating the pace of CNS drug discovery and promoting a more ethical research approach.

References

  1. Neuropharmacology. 2007 Feb;52(2):333-46 [PMID: 17045309]
  2. J Pharmacol Exp Ther. 2002 Nov;303(2):534-9 [PMID: 12388633]
  3. PLoS One. 2013 Dec 03;8(12):e80634 [PMID: 24312489]
  4. Pharmaceutics. 2021 Jun 16;13(6): [PMID: 34208550]
  5. J Am Soc Nephrol. 2002 Apr;13(4):866-874 [PMID: 11912245]
  6. Comp Med. 2015 Aug;65(4):333-41 [PMID: 26310463]
  7. Mol Pharmacol. 1999 May;55(5):847-54 [PMID: 10220563]
  8. J Cereb Blood Flow Metab. 2016 May;36(5):862-90 [PMID: 26868179]
  9. Expert Opin Drug Discov. 2014 Aug;9(8):873-90 [PMID: 24857286]
  10. Regul Toxicol Pharmacol. 2023 Feb;138:105327 [PMID: 36586472]
  11. Pharm Res. 2020 Aug 27;37(9):175 [PMID: 32856111]
  12. Indian J Pharm Sci. 2011 Jan;73(1):1-6 [PMID: 22131615]
  13. Drug Metab Dispos. 2019 Apr;47(4):405-411 [PMID: 30683809]
  14. Eur J Pharm Biopharm. 2018 Jun;127:453-461 [PMID: 29602020]
  15. Drug Metab Dispos. 2011 Jul;39(7):1270-7 [PMID: 21474681]
  16. J Pharm Sci. 2004 Aug;93(8):2108-23 [PMID: 15236458]
  17. Am J Physiol. 1999 Jan;276(1):F122-8 [PMID: 9887087]
  18. Drug Metab Dispos. 2002 Dec;30(12):1497-503 [PMID: 12433825]
  19. Drug Metab Dispos. 2009 Mar;37(3):635-43 [PMID: 19047468]
  20. ALTEX. 2022 Apr 21;39(4):605-620 [PMID: 35502626]
  21. Ther Deliv. 2015;6(8):961-71 [PMID: 26305616]
  22. Drug Discov Today. 2018 Jul;23(7):1357-1372 [PMID: 29548981]
  23. Mol Pharm. 2013 Oct 7;10(10):3822-31 [PMID: 23977999]
  24. Xenobiotica. 2022 Jun;52(6):591-607 [PMID: 36000364]
  25. J Cereb Blood Flow Metab. 2012 Nov;32(11):1959-72 [PMID: 22929442]
  26. J Med Chem. 2006 Dec 28;49(26):7559-83 [PMID: 17181137]
  27. Biochem J. 1997 Sep 1;326 ( Pt 2):539-44 [PMID: 9291129]
  28. Pharm Res. 2022 Jul;39(7):1321-1341 [PMID: 35411506]
  29. Eur J Pharm Sci. 2023 Nov 1;190:106554 [PMID: 37543065]
  30. AAPS J. 2022 Jan 13;24(1):28 [PMID: 35028763]
  31. Animals (Basel). 2021 Oct 19;11(10): [PMID: 34680019]
  32. Fluids Barriers CNS. 2017 Oct 31;14(1):30 [PMID: 29089037]
  33. Proc Soc Exp Biol Med. 1966 Jul;122(3):931-5 [PMID: 5918973]
  34. Drug Metab Pharmacokinet. 2022 Feb;42:100426 [PMID: 34974334]
  35. Pharm Res. 2008 Aug;25(8):1737-50 [PMID: 18058202]
  36. Eur J Pharm Biopharm. 2021 Dec;169:211-219 [PMID: 34756975]
  37. Clin Pharmacol Ther. 2021 Aug;110(2):432-442 [PMID: 33675056]
  38. Pharmacol Res. 1993 Apr;27(3):241-52 [PMID: 8327404]

Grants

  1. 9065-00189B/Innovationsfonden

MeSH Term

Animals
Blood-Brain Barrier
Brain
Biological Transport