The Spherical Evolutionary Multi-Objective (SEMO) Algorithm for Identifying Disease Multi-Locus SNP Interactions.

Fuxiang Ren, Shiyin Li, Zihao Wen, Yidi Liu, Deyu Tang
Author Information
  1. Fuxiang Ren: College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China.
  2. Shiyin Li: College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China. ORCID
  3. Zihao Wen: College of Mathematics and Informatics, College of Software Engineering, South China Agricultural University, Guangzhou 510642, China.
  4. Yidi Liu: College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China.
  5. Deyu Tang: College of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou 510006, China.

Abstract

Single-nucleotide polymorphisms (SNPs), as disease-related biogenetic markers, are crucial in elucidating complex disease susceptibility and pathogenesis. Due to computational inefficiency, it is difficult to identify high-dimensional SNP interactions efficiently using combinatorial search methods, so the spherical evolutionary multi-objective (SEMO) algorithm for detecting multi-locus SNP interactions was proposed. The algorithm uses a spherical search factor and a feedback mechanism of excellent individual history memory to enhance the balance between search and acquisition. Moreover, a multi-objective fitness function based on the decomposition idea was used to evaluate the associations by combining two functions, K2-Score and LR-Score, as an objective function for the algorithm's evolutionary iterations. The performance evaluation of SEMO was compared with six state-of-the-art algorithms on a simulated dataset. The results showed that SEMO outperforms the comparative methods by detecting SNP interactions quickly and accurately with a shorter average run time. The SEMO algorithm was applied to the Wellcome Trust Case Control Consortium (WTCCC) breast cancer dataset and detected two- and three-point SNP interactions that were significantly associated with breast cancer, confirming the effectiveness of the algorithm. New combinations of SNPs associated with breast cancer were also identified, which will provide a new way to detect SNP interactions quickly and accurately.

Keywords

References

  1. BMC Bioinformatics. 2008 May 16;9:238 [PMID: 18485205]
  2. Genes (Basel). 2019 Feb 01;10(2): [PMID: 30717303]
  3. Nat Genet. 2007 Nov;39(11):1329-37 [PMID: 17952073]
  4. Hum Mol Genet. 2002 Oct 1;11(20):2463-8 [PMID: 12351582]
  5. Am J Med Genet B Neuropsychiatr Genet. 2010 Mar 5;153B(2):359-364 [PMID: 19591129]
  6. Genes (Basel). 2018 Aug 29;9(9): [PMID: 30158504]
  7. Sci Rep. 2017 Sep 14;7(1):11529 [PMID: 28912584]
  8. IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar-Apr;15(2):599-612 [PMID: 28060710]
  9. Bioinformatics. 2009 Feb 15;25(4):504-11 [PMID: 19098029]
  10. Genet Epidemiol. 2005 Dec;29(4):313-22 [PMID: 16240441]
  11. Am J Hum Genet. 2001 Jul;69(1):138-47 [PMID: 11404819]
  12. IEEE/ACM Trans Comput Biol Bioinform. 2020 Jul-Aug;17(4):1253-1261 [PMID: 30403637]
  13. BioData Min. 2017 Jul 6;10:23 [PMID: 28694848]
  14. Nat Rev Genet. 2009 Jun;10(6):392-404 [PMID: 19434077]
  15. IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):455-464 [PMID: 35239492]
  16. PLoS One. 2013 May 07;8(5):e62936 [PMID: 23667544]
  17. Front Immunol. 2022 Oct 31;13:937125 [PMID: 36389832]
  18. IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):71-81 [PMID: 30040653]
  19. Bioinformatics. 2020 Aug 15;36(16):4389-4398 [PMID: 32227192]
  20. BMC Bioinformatics. 2017 Mar 21;18(1):184 [PMID: 28327091]
  21. Genes (Basel). 2022 Dec 04;13(12): [PMID: 36553553]
  22. Brief Bioinform. 2022 Jul 18;23(4): [PMID: 35696639]
  23. PLoS Biol. 2021 Feb 24;19(2):e3001113 [PMID: 33626035]
  24. Hum Mol Genet. 2014 Apr 1;23(7):1934-46 [PMID: 24242184]
  25. IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):912-926 [PMID: 33055017]
  26. Oncotarget. 2016 Oct 25;7(43):69592-69605 [PMID: 27612429]
  27. BioData Min. 2012 Oct 01;5(1):16 [PMID: 23025260]
  28. Am J Hum Genet. 2002 Feb;70(2):461-71 [PMID: 11791213]

Grants

  1. 61976239/National Natural Science Foundation of China
  2. 2020A1515010783/Guang Dong Provincial Natural Fund Project

MeSH Term

Humans
Female
Genome-Wide Association Study
Polymorphism, Single Nucleotide
Algorithms
Breast Neoplasms

Word Cloud

Created with Highcharts 10.0.0SNPinteractionsSEMOalgorithmsearchsphericalevolutionarymulti-objectivebreastcancerpolymorphismsSNPsbiogeneticmarkersdiseasemethodsdetectingmulti-locusfunctionalgorithmsdatasetquicklyaccuratelyassociatedSingle-nucleotidedisease-relatedcrucialelucidatingcomplexsusceptibilitypathogenesisDuecomputationalinefficiencydifficultidentifyhigh-dimensionalefficientlyusingcombinatorialproposedusesfactorfeedbackmechanismexcellentindividualhistorymemoryenhancebalanceacquisitionMoreoverfitnessbaseddecompositionideausedevaluateassociationscombiningtwofunctionsK2-ScoreLR-Scoreobjectivealgorithm'siterationsperformanceevaluationcomparedsixstate-of-the-artsimulatedresultsshowedoutperformscomparativeshorteraverageruntimeappliedWellcomeTrustCaseControlConsortiumWTCCCdetectedtwo-three-pointsignificantlyconfirmingeffectivenessNewcombinationsalsoidentifiedwillprovidenewwaydetectSphericalEvolutionaryMulti-ObjectiveAlgorithmIdentifyingDiseaseMulti-LocusInteractionsmodelsoptimizationsingle-nucleotide

Similar Articles

Cited By

No available data.