Implementation of Artificial Synapse Using IGZO-Based Resistive Switching Device.

Seongmin Kim, Dongyeol Ju, Sungjun Kim
Author Information
  1. Seongmin Kim: Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
  2. Dongyeol Ju: Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea.
  3. Sungjun Kim: Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea.

Abstract

In this study, we present the resistive switching characteristics and the emulation of a biological synapse using the ITO/IGZO/TaN device. The device demonstrates efficient energy consumption, featuring low current resistive switching with minimal set and reset voltages. Furthermore, we establish that the device exhibits typical bipolar resistive switching with the coexistence of non-volatile and volatile memory properties by controlling the compliance during resistive switching phenomena. Utilizing the IGZO-based RRAM device with an appropriate pulse scheme, we emulate a biological synapse based on its electrical properties. Our assessments include potentiation and depression, a pattern recognition system based on neural networks, paired-pulse facilitation, excitatory post-synaptic current, and spike-amplitude dependent plasticity. These assessments confirm the device's effective emulation of a biological synapse, incorporating both volatile and non-volatile functions. Furthermore, through spike-rate dependent plasticity and spike-timing dependent plasticity of the Hebbian learning rules, high-order synapse imitation was done.

Keywords

References

  1. Nanoscale Res Lett. 2022 Sep 3;17(1):84 [PMID: 36057011]
  2. Micromachines (Basel). 2023 Jul 08;14(7): [PMID: 37512704]
  3. Adv Mater. 2023 Sep;35(37):e2205381 [PMID: 36222391]
  4. Nat Mater. 2019 Apr;18(4):309-323 [PMID: 30894760]
  5. Materials (Basel). 2020 Jan 01;13(1): [PMID: 31906325]
  6. Science. 2000 Jan 14;287(5451):248-51 [PMID: 10634773]
  7. Dev Sci. 2004 Apr;7(2):141-8 [PMID: 15320372]
  8. Nanomicro Lett. 2020 May 22;12(1):114 [PMID: 34138130]
  9. Nature. 1996 Jun 6;381(6582):526-8 [PMID: 8632826]
  10. Micromachines (Basel). 2020 Jan 30;11(2): [PMID: 32019257]
  11. ACS Appl Mater Interfaces. 2022 Feb 23;14(7):9368-9376 [PMID: 35147029]
  12. J Phys Chem Lett. 2022 Aug 25;13(33):7870-7880 [PMID: 35979996]
  13. Annu Rev Neurosci. 2008;31:25-46 [PMID: 18275283]
  14. Sci Rep. 2017 Aug 31;7(1):10186 [PMID: 28860572]
  15. Sci Rep. 2020 Jun 9;10(1):9276 [PMID: 32518357]
  16. Nanomaterials (Basel). 2023 Sep 01;13(17): [PMID: 37686985]
  17. Nanoscale Res Lett. 2016 Dec;11(1):389 [PMID: 27605241]
  18. Faraday Discuss. 2019 Feb 18;213(0):421-451 [PMID: 30426118]
  19. J Mater Chem C Mater. 2022 Jan 10;10(6):1991-1998 [PMID: 35873858]
  20. Sci Rep. 2022 Jan 24;12(1):1259 [PMID: 35075173]
  21. Nanotechnology. 2019 Jan 11;30(2):025203 [PMID: 30387440]
  22. ACS Appl Mater Interfaces. 2019 Oct 30;11(43):40300-40309 [PMID: 31584254]
  23. Adv Mater. 2019 Dec;31(49):e1902761 [PMID: 31550405]
  24. Nanoscale. 2023 May 11;15(18):8366-8376 [PMID: 37092534]

Grants

  1. 2021R1C1C1004422/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0resistiveswitchingsynapsedevicebiologicaldependentplasticityemulationcurrentFurthermorenon-volatilevolatilepropertiesRRAMbasedassessmentsstudypresentcharacteristicsusingITO/IGZO/TaNdemonstratesefficientenergyconsumptionfeaturinglowminimalsetresetvoltagesestablishexhibitstypicalbipolarcoexistencememorycontrollingcompliancephenomenaUtilizingIGZO-basedappropriatepulseschemeemulateelectricalincludepotentiationdepressionpatternrecognitionsystemneuralnetworkspaired-pulsefacilitationexcitatorypost-synapticspike-amplitudeconfirmdevice'seffectiveincorporatingfunctionsspike-ratespike-timingHebbianlearningruleshigh-orderimitationdoneImplementationArtificialSynapseUsingIGZO-BasedResistiveSwitchingDeviceIGZOSRDPSTDP

Similar Articles

Cited By