Cadmium toxicity and autophagy: a review.

Yueting Shao, Liting Zheng, Yiguo Jiang
Author Information
  1. Yueting Shao: Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
  2. Liting Zheng: Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
  3. Yiguo Jiang: Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China. jiangyiguo@vip.163.com.

Abstract

Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.

Keywords

References

  1. Abbasabadi MK, Shirkhanloo H (2020) Speciation of cadmium in human blood samples based on Fe(3)O(4)-supported naphthalene-1-thiol- functionalized graphene oxide nanocomposite by ultrasound-assisted dispersive magnetic micro solid phase extraction. J Pharm Biomed Anal 189:113455. https://doi.org/10.1016/j.jpba.2020.113455 [DOI: 10.1016/j.jpba.2020.113455]
  2. Aki T, Funakoshi T, Unuma K, Uemura K (2013) Impairment of autophagy: from hereditary disorder to drug intoxication. Toxicology 311(3):205���215. https://doi.org/10.1016/j.tox.2013.07.001 [DOI: 10.1016/j.tox.2013.07.001]
  3. Ali W, Bian Y, Ali H, Sun J, Zhu J, Ma Y, Liu Z, Zou H (2023) Cadmium-induced impairment of spermatozoa development by reducing exosomal-MVBs secretion: a novel pathway. Aging 15(10):4096���4107. https://doi.org/10.18632/aging.204675 [DOI: 10.18632/aging.204675]
  4. Arab HH, Ashour AM, Eid AH, Arafa EA, Khabbaz A, H. J., El-Aal A, S. A (2022a) Targeting oxidative stress, apoptosis, and autophagy by galangin mitigates cadmium-induced renal damage: role of SIRT1/Nrf2 and AMPK/mTOR pathways. Life Sci 291:120300. https://doi.org/10.1016/j.lfs.2021.120300 [DOI: 10.1016/j.lfs.2021.120300]
  5. Arab HH, Elhemiely AA, El-Sheikh AAK, Khabbaz HJA, Arafa EA, Ashour AM, Kabel AM, Eid AH (2022b) Repositioning linagliptin for the mitigation of cadmium-induced testicular dysfunction in rats: targeting HMGB1/TLR4/NLRP3 axis and autophagy. Pharmaceuticals (Basel). https://doi.org/10.3390/ph15070852 [DOI: 10.3390/ph15070852]
  6. Baan RA, Stewart BW, Straif K (2019) Tumour site concordance and mechanisms of carcinogenesis. https://www.ncbi.nlm.nih.gov/pubmed/33979073
  7. Barrouillet MP, Ohayon-Courtes C, Dubus I, L���Azou B, Nguyen Ba C (2001) Influence of cadmium speciation for the evaluation of in vitro cadmium toxicity on LLC-PK(1) cells. Toxicol In Vitro 15(4���5):525���529. https://doi.org/10.1016/s0887-2333(01)00072-8 [DOI: 10.1016/s0887-2333(01)00072-8]
  8. Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R, Pinton P (2008) Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43(2):184���195. https://doi.org/10.1016/j.ceca.2007.05.003 [DOI: 10.1016/j.ceca.2007.05.003]
  9. Cabukusta B, Neefjes J (2018) Mechanisms of lysosomal positioning and movement. Traffic 19(10):761���769. https://doi.org/10.1111/tra.12587 [DOI: 10.1111/tra.12587]
  10. Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N (2021) mTOR activity and autophagy in senescent cells, a complex partnership. Int J Mol Sci. https://doi.org/10.3390/ijms22158149 [DOI: 10.3390/ijms22158149]
  11. Chandler JD, Hu X, Ko EJ, Park S, Fernandes J, Lee YT, Orr ML, Hao L, Smith MR, Neujahr DC, Uppal K, Kang SM, Jones DP, Go YM (2019) Low-dose cadmium potentiates lung inflammatory response to 2009 pandemic H1N1 influenza virus in mice. Environ Int 127:720���729. https://doi.org/10.1016/j.envint.2019.03.054 [DOI: 10.1016/j.envint.2019.03.054]
  12. Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, May E, M. V., Mograbi B (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121(1):31���42. https://doi.org/10.1093/toxsci/kfr031 [DOI: 10.1093/toxsci/kfr031]
  13. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1):171���182. https://doi.org/10.1038/sj.cdd.4402233 [DOI: 10.1038/sj.cdd.4402233]
  14. Chen D, Ran D, Wang C, Liu Y, Ma Y, Song R, Gao Y, Liu Z (2021) Role of mitochondrial dysfunction and PINK1/Parkin-mediated mitophagy in Cd-induced hepatic lipid accumulation in chicken embryos. Life Sci 284:119906. https://doi.org/10.1016/j.lfs.2021.119906 [DOI: 10.1016/j.lfs.2021.119906]
  15. Chen F, Cai X, Kang R, Liu J, Tang D (2023) Autophagy-dependent ferroptosis in Cancer. Antioxid Redox Signal 39(1���3):79���101. https://doi.org/10.1089/ars.2022.0202 [DOI: 10.1089/ars.2022.0202]
  16. Cheung EC, Vousden KH (2022) The role of ROS in tumour development and progression. Nat Rev Cancer 22(5):280���297. https://doi.org/10.1038/s41568-021-00435-0 [DOI: 10.1038/s41568-021-00435-0]
  17. Chiarelli R, Martino C, Roccheri MC (2019) Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones 24(4):675���687. https://doi.org/10.1007/s12192-019-01010-1 [DOI: 10.1007/s12192-019-01010-1]
  18. Chou X, Ding F, Zhang X, Ding X, Gao H, Wu Q (2019) Sirtuin-1 ameliorates cadmium-induced endoplasmic reticulum stress and pyroptosis through XBP-1s deacetylation in human renal tubular epithelial cells. Arch Toxicol 93(4):965���986. https://doi.org/10.1007/s00204-019-02415-8 [DOI: 10.1007/s00204-019-02415-8]
  19. Cong L, Bai Y, Guo Z (2022) The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease. Front Cardiovasc Med 9:997469. https://doi.org/10.3389/fcvm.2022.997469 [DOI: 10.3389/fcvm.2022.997469]
  20. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927���940. https://doi.org/10.1007/s10534-010-9329-x [DOI: 10.1007/s10534-010-9329-x]
  21. Cybulsky AV (2017) Endoplasmic reticulum stress, the unfolded protein response and autophagy in kidney diseases. Nat Rev Nephrol 13(11):681���696. https://doi.org/10.1038/nrneph.2017.129 [DOI: 10.1038/nrneph.2017.129]
  22. Dickinson BC, Chang CJ (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol 7(8):504���511. https://doi.org/10.1038/nchembio.607 [DOI: 10.1038/nchembio.607]
  23. Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393(7):547���564. https://doi.org/10.1515/hsz-2012-0119 [DOI: 10.1515/hsz-2012-0119]
  24. Dong W, Liu G, Zhang K, Tan Y, Zou H, Yuan Y, Gu J, Song R, Zhu J, Liu Z (2021) Cadmium exposure induces rat proximal tubular cells injury via p62-dependent Nrf2 nucleus translocation mediated activation of AMPK/AKT/mTOR pathway. Ecotoxicol Environ Saf 214:112058. https://doi.org/10.1016/j.ecoenv.2021.112058 [DOI: 10.1016/j.ecoenv.2021.112058]
  25. Fan T, Chen Y, He Z, Wang Q, Yang X, Ren Z, Zhang S (2019) Inhibition of ROS/NUPR1-dependent autophagy antagonises repeated cadmium exposure -induced oral squamous cell carcinoma cell migration and invasion. Toxicol Lett 314:142���152. https://doi.org/10.1016/j.toxlet.2019.07.017 [DOI: 10.1016/j.toxlet.2019.07.017]
  26. Fan RF, Tang KK, Wang ZY, Wang L (2021) Persistent activation of Nrf2 promotes a vicious cycle of oxidative stress and autophagy inhibition in cadmium-induced kidney injury. Toxicology 464:152999. https://doi.org/10.1016/j.tox.2021.152999 [DOI: 10.1016/j.tox.2021.152999]
  27. Fels J, Scharner B, Zarbock R, Zavala Guevara IP, Lee WK, Barbier OC, Thevenod F (2019) Cadmium complexed with beta2-microglubulin, albumin and lipocalin-2 rather than metallothionein cause megalin:cubilin dependent toxicity of the renal proximal tubule. Int J Mol Sci. https://doi.org/10.3390/ijms20102379 [DOI: 10.3390/ijms20102379]
  28. Filippini T, Wise LA, Vinceti M (2022) Cadmium exposure and risk of diabetes and prediabetes: a systematic review and dose-response meta-analysis. Environ Int 158:106920. https://doi.org/10.1016/j.envint.2021.106920 [DOI: 10.1016/j.envint.2021.106920]
  29. Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, Cuervo AM, Debnath J, Deretic V, Dikic I, Eskelinen EL, Fimia GM, Fulda S, Gewirtz DA, Green DR, Hansen M, Harper JW, Jaattela M, Johansen T, Juhasz G, Kimmelman AC, Kraft C, Ktistakis NT, Kumar S, Levine B, Lopez-Otin C, Madeo F, Martens S, Martinez J, Melendez A, Mizushima N, Munz C, Murphy LO, Penninger JM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Santambrogio L, Scorrano L, Simon AK, Simon HU, Simonsen A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Kroemer G (2017) Molecular definitions of autophagy and related processes. EMBO J 36(13):1811���1836. https://doi.org/10.15252/embj.201796697 [DOI: 10.15252/embj.201796697]
  30. Ganguly K, Levanen B, Palmberg L, Akesson A, Linden A (2018) Cadmium in tobacco smokers: a neglected link to lung disease? Eur Respir Rev. https://doi.org/10.1183/16000617.0122-2017 [DOI: 10.1183/16000617.0122-2017]
  31. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health https://doi.org/10.3390/ijerph17113782 [DOI: 10.3390/ijerph17113782]
  32. Ghasempour A, Dehghan H, Ataee M, Chen B, Zhao Z, Sedighi M, Guo X, Shahbazi MA (2023) Cadmium sulfide nanoparticles: preparation, characterization, and biomedical applications. Molecules. https://doi.org/10.3390/molecules28093857 [DOI: 10.3390/molecules28093857]
  33. Gibson SB (2013) Investigating the role of reactive oxygen species in regulating autophagy. Methods Enzymol 528:217���235. https://doi.org/10.1016/B978-0-12-405881-1.00013-6 [DOI: 10.1016/B978-0-12-405881-1.00013-6]
  34. Gong ZG, Zhao Y, Wang ZY, Fan RF, Liu ZP, Wang L (2022) Epigenetic regulator BRD4 is involved in cadmium-induced acute kidney injury via contributing to lysosomal dysfunction, autophagy blockade and oxidative stress. J Hazard Mater 423(Pt A):127110. https://doi.org/10.1016/j.jhazmat.2021.127110 [DOI: 10.1016/j.jhazmat.2021.127110]
  35. Gorlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260���271. https://doi.org/10.1016/j.redox.2015.08.010 [DOI: 10.1016/j.redox.2015.08.010]
  36. Gu J, Wang Y, Liu Y, Shi M, Yin L, Hou Y, Zhou Y, Chu Wong CK, Chen D, Guo Z, Shi H (2019) Inhibition of Autophagy alleviates Cadmium-Induced mouse spleen and human B cells apoptosis. Toxicol Sci 170(1):109���122. https://doi.org/10.1093/toxsci/kfz089 [DOI: 10.1093/toxsci/kfz089]
  37. Guo AH, Kumar S, Lombard DB (2022) Epigenetic mechanisms of cadmium-induced nephrotoxicity. Curr Opin Toxicol. https://doi.org/10.1016/j.cotox.2022.100372 [DOI: 10.1016/j.cotox.2022.100372]
  38. Hartwig A (2013) Cadmium and cancer. Met Ions Life Sci 11:491���507. https://doi.org/10.1007/978-94-007-5179-8_15 [DOI: 10.1007/978-94-007-5179-8_15]
  39. Hill A, Gailer J (2021) Linking molecular targets of cd in the bloodstream to organ-based adverse health effects. J Inorg Biochem 216:111279. https://doi.org/10.1016/j.jinorgbio.2020.111279 [DOI: 10.1016/j.jinorgbio.2020.111279]
  40. Hill SM, Wrobel L, Rubinsztein DC (2019) Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation. Cell Death Differ 26(4):617���629. https://doi.org/10.1038/s41418-018-0254-9 [DOI: 10.1038/s41418-018-0254-9]
  41. Horn NM, Thomas AL (1996)  Interactions between the histidine stimulation of cadmium and zinc influx into human erythrocytes. J Physiol. https://doi.org/10.1113/jphysiol.1996.sp021721 [DOI: 10.1113/jphysiol.1996.sp021721]
  42. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12(8):1425���1428. https://doi.org/10.1080/15548627.2016.1187366 [DOI: 10.1080/15548627.2016.1187366]
  43. Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14(9):1576���1582. https://doi.org/10.1038/sj.cdd.4402200 [DOI: 10.1038/sj.cdd.4402200]
  44. Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25(2):193���205. https://doi.org/10.1016/j.molcel.2006.12.009 [DOI: 10.1016/j.molcel.2006.12.009]
  45. Humans IWG (2012) Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 100(Pt C):11���465
  46. Ikokide EJ, Oyagbemi AA, Oyeyemi MO (2022) Impacts of cadmium on male fertility: lessons learnt so far. Andrologia 54(9):e14516. https://doi.org/10.1111/and.14516 [DOI: 10.1111/and.14516]
  47. Jeong J, Yun SM, Kim M, Koh YH (2020) Association of blood cadmium with cardiovascular disease in korea: from the korea national health and nutrition examination survey 2008���2013 and 2016. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph17176288 [DOI: 10.3390/ijerph17176288]
  48. Jiang G, Deng W, Liu Y, Wang C (2020) General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep 21(3):1021���1034. https://doi.org/10.3892/mmr.2020.10927 [DOI: 10.3892/mmr.2020.10927]
  49. Jiang YL, Fei J, Cao P, Zhang C, Tang MM, Cheng JY, Zhao H, Fu L (2022) Serum cadmium positively correlates with inflammatory cytokines in patients with chronic obstructive pulmonary disease. Environ Toxicol 37(1):151���160. https://doi.org/10.1002/tox.23386 [DOI: 10.1002/tox.23386]
  50. Keller CW, Adamopoulos IE, Lunemann JD (2023) Autophagy pathways in autoimmune diseases. J Autoimmun 136:103030. https://doi.org/10.1016/j.jaut.2023.103030 [DOI: 10.1016/j.jaut.2023.103030]
  51. Klaassen CD, Liu J, Choudhuri S (1999) Metallothionein: an intracellular protein to protect against cadmium toxicity. Annu Rev Pharmacol Toxicol 39:267���294. https://doi.org/10.1146/annurev.pharmtox.39.1.267 [DOI: 10.1146/annurev.pharmtox.39.1.267]
  52. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cadwell K, Cecconi F, Choi AMK, Choi ME, Chu CT, Codogno P, Colombo MI, Cuervo AM, Deretic V, Dikic I, Elazar Z, Eskelinen EL, Fimia GM, Gewirtz DA, Green DR, Hansen M, Jaattela M, Johansen T, Juhasz G, Karantza V, Kraft C, Kroemer G, Ktistakis NT, Kumar S, Lopez-Otin C, Macleod KF, Madeo F, Martinez J, Melendez A, Mizushima N, Munz C, Penninger JM, Perera RM, Piacentini M, Reggiori F, Rubinsztein DC, Ryan KM, Sadoshima J, Santambrogio L, Scorrano L, Simon HU, Simon AK, Simonsen A, Stolz A, Tavernarakis N, Tooze SA, Yoshimori T, Yuan J, Yue Z, Zhong Q, Galluzzi L, Pietrocola F (2021) Autophagy in major human diseases. EMBO J 40(19):e108863. https://doi.org/10.15252/embj.2021108863 [DOI: 10.15252/embj.2021108863]
  53. Kolluru V, Tyagi A, Chandrasekaran B, Ankem M, Damodaran C (2019) Induction of endoplasmic reticulum stress might be responsible for defective autophagy in cadmium-induced prostate carcinogenesis. Toxicol Appl Pharmacol 373:62���68. https://doi.org/10.1016/j.taap.2019.04.012 [DOI: 10.1016/j.taap.2019.04.012]
  54. Kouroumalis E, Tsomidis I, Voumvouraki A (2023) Pathogenesis of hepatocellular carcinoma: the interplay of apoptosis and autophagy. Biomedicines. https://doi.org/10.3390/biomedicines11041166 [DOI: 10.3390/biomedicines11041166]
  55. Latunde-Dada GO (2017) Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj 1861(8):1893���1900. https://doi.org/10.1016/j.bbagen.2017.05.019 [DOI: 10.1016/j.bbagen.2017.05.019]
  56. Lee HY, Oh SH (2021) Autophagy-mediated cytoplasmic accumulation of p53 leads to apoptosis through DRAM-BAX in cadmium-exposed human proximal tubular cells. Biochem Biophys Res Commun 534:128���133. https://doi.org/10.1016/j.bbrc.2020.12.019 [DOI: 10.1016/j.bbrc.2020.12.019]
  57. Lee WK, Probst S, Santoyo-Sanchez MP, Al-Hamdani W, Diebels I, von Sivers JK, Kerek E, Prenner EJ, Thevenod F (2017) Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol 91(10):3225���3245. https://doi.org/10.1007/s00204-017-1942-9 [DOI: 10.1007/s00204-017-1942-9]
  58. Lefojane RP, Sone BT, Matinise N, Saleh K, Direko P, Mfengwana P, Mashele S, Maaza M, Sekhoacha MP (2021) CdO/CdCO(3) nanocomposite physical properties and cytotoxicity against selected breast cancer cell lines. Sci Rep 11(1):30. https://doi.org/10.1038/s41598-020-78720-5 [DOI: 10.1038/s41598-020-78720-5]
  59. Lener MR, Reszka E, Marciniak W, Lesicka M, Baszuk P, Jablonska E, Bialkowska K, Muszynska M, Pietrzak S, Derkacz R, Grodzki T, Wojcik J, Wojtys M, Debniak T, Cybulski C, Gronwald J, Kubisa B, Pierog J, Waloszczyk P, Scott RJ, Jakubowska A, Narod SA, Lubinski J (2021) Blood cadmium levels as a marker for early lung cancer detection. J Trace Elem Med Biol 64:126682. https://doi.org/10.1016/j.jtemb.2020.126682 [DOI: 10.1016/j.jtemb.2020.126682]
  60. Lepine S, Allegood JC, Edmonds Y, Milstien S, Spiegel S (2011) Autophagy induced by deficiency of sphingosine-1-phosphate phosphohydrolase 1 is switched to apoptosis by calpain-mediated autophagy-related gene 5 (Atg5) cleavage. J Biol Chem 286(52):44380���44390. https://doi.org/10.1074/jbc.M111.257519 [DOI: 10.1074/jbc.M111.257519]
  61. Li Y, Cheng X, Li M, Wang Y, Fu T, Zhou Z, Wang Y, Gong X, Xu X, Liu J, Pan L (2020) Decoding three distinct states of the Syntaxin17 SNARE motif in mediating autophagosome-lysosome fusion. Proc Natl Acad Sci U S A 117(35):21391���21402. https://doi.org/10.1073/pnas.2006997117 [DOI: 10.1073/pnas.2006997117]
  62. Li M, Pi H, Yang Z, Reiter RJ, Xu S, Chen X, Chen C, Zhang L, Yang M, Li Y, Guo P, Li G, Tu M, Tian L, Xie J, He M, Lu Y, Zhong M, Zhang Y, Yu Z, Zhou Z (2016) Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells. J Pineal Res 61(3):353���369. https://doi.org/10.1111/jpi.12353 [DOI: 10.1111/jpi.12353]
  63. Li Z, Li Q, Lv W, Jiang L, Geng C, Yao X, Shi X, Liu Y, Cao J (2019) The interaction of Atg4B and Bcl-2 plays an important role in Cd-induced crosstalk between apoptosis and autophagy through disassociation of bcl-2-Beclin1 in A549 cells. Free Radic Biol Med 130:576���591. https://doi.org/10.1016/j.freeradbiomed.2018.11.020 [DOI: 10.1016/j.freeradbiomed.2018.11.020]
  64. Li M, Chen W, Cui J, Lin Q, Liu Y, Zeng H, Hua Q, Ling Y, Qin X, Zhang Y, Li X, Lin T, Huang L, Jiang Y (2023a) circCIMT silencing promotes Cadmium-Induced Malignant Transformation of Lung epithelial cells through the DNA base excision repair pathway. Adv Sci (Weinh) 10(14):e2206896. https://doi.org/10.1002/advs.202206896 [DOI: 10.1002/advs.202206896]
  65. Li N, Yi BJ, Saleem MAU, Li XN, Li JL (2023b) Autophagy protects against Cd-induced cell damage in primary chicken hepatocytes via mitigation of oxidative stress and endoplasmic reticulum stress. Ecotoxicol Environ Saf 259:115056. https://doi.org/10.1016/j.ecoenv.2023.115056 [DOI: 10.1016/j.ecoenv.2023.115056]
  66. Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS, Xu L (2011) A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating bcl-2-Beclin1 interaction at endoplasmic reticulum. Cell Death Differ 18(1):60���71. https://doi.org/10.1038/cdd.2010.74 [DOI: 10.1038/cdd.2010.74]
  67. Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22(3):367���376. https://doi.org/10.1038/cdd.2014.143 [DOI: 10.1038/cdd.2014.143]
  68. Liu J, Liu Y, Habeebu SS, Klaassen CD (1998) Susceptibility of MT-null mice to chronic CdCl2-induced nephrotoxicity indicates that renal injury is not mediated by the CdMT complex. Toxicol Sci 46(1):197���203. https://doi.org/10.1006/toxs.1998.2541 [DOI: 10.1006/toxs.1998.2541]
  69. Liu G, Zhang K, Dong W, Tan Y, Long M, Zou H, Liu Z (2020a) Puerarin restores the autophagic flux to alleviate cadmium���induced endoplasmic reticulum stress in NRK���52E cells. Mol Med Rep 22(3):2551���2563. https://doi.org/10.3892/mmr.2020.11301 [DOI: 10.3892/mmr.2020.11301]
  70. Liu H, Wang Y, Ren Z, Ji X, Peprah FA, Zhang X, Dai S, Zhou Y, Gu J, Shi H (2020b) Dietary cadmium exposure causes elevation of blood ApoE with triglyceride level in mice. Biometals 33(4���5):241���254. https://doi.org/10.1007/s10534-020-00247-z [DOI: 10.1007/s10534-020-00247-z]
  71. Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R, Tang D (2020c) Autophagy-dependent ferroptosis: Machinery and Regulation. Cell Chem Biol 27(4):420���435. https://doi.org/10.1016/j.chembiol.2020.02.005 [DOI: 10.1016/j.chembiol.2020.02.005]
  72. Liu C, Li HJ, Duan WX, Duan Y, Yu Q, Zhang T, Sun YP, Li YY, Liu YS, Xu SC (2023) MCU Upregulation overactivates Mitophagy by promoting VDAC1 dimerization and ubiquitination in the hepatotoxicity of Cadmium. Adv Sci (Weinh) 10(7):e2203869. https://doi.org/10.1002/advs.202203869 [DOI: 10.1002/advs.202203869]
  73. Lou M, Garay R, Alda JO (1991) Cadmium uptake through the anion exchanger in human red blood cells. J Physiol 443:123���136. https://doi.org/10.1113/jphysiol.1991.sp018826 [DOI: 10.1113/jphysiol.1991.sp018826]
  74. Luo B, Lin Y, Jiang S, Huang L, Yao H, Zhuang Q, Zhao R, Liu H, He C, Lin Z (2016) Endoplasmic reticulum stress eIF2alpha-ATF4 pathway-mediated cyclooxygenase-2 induction regulates cadmium-induced autophagy in kidney. Cell Death Dis 7(6):e2251. https://doi.org/10.1038/cddis.2016.78 [DOI: 10.1038/cddis.2016.78]
  75. Lv W, Sui L, Yan X, Xie H, Jiang L, Geng C, Li Q, Yao X, Kong Y, Cao J (2018) ROS-dependent Atg4 upregulation mediated autophagy plays an important role in Cd-induced proliferation and invasion in A549 cells. Chem Biol Interact 279:136���144. https://doi.org/10.1016/j.cbi.2017.11.013 [DOI: 10.1016/j.cbi.2017.11.013]
  76. Lv YJ, Wei QZ, Zhang YC, Huang R, Li BS, Tan JB, Wang J, Ling HT, Wu SX, Yang XF (2019) Low-dose cadmium exposure acts on rat mesenchymal stem cells via RANKL/OPG and downregulate osteogenic differentiation genes. Environ Pollut 249:620���628. https://doi.org/10.1016/j.envpol.2019.03.027 [DOI: 10.1016/j.envpol.2019.03.027]
  77. Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H, Song R, Liu Z (2022) The effect of oxidative stress-induced autophagy by cadmium exposure in kidney, liver, and bone damage, and neurotoxicity. Int J Mol Sci. https://doi.org/10.3390/ijms232113491 [DOI: 10.3390/ijms232113491]
  78. Maiese K (2020) Dysregulation of metabolic flexibility: the impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 155:1���35. https://doi.org/10.1016/bs.irn.2020.01.009 [DOI: 10.1016/bs.irn.2020.01.009]
  79. Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18(6):716���731. https://doi.org/10.1016/j.semcdb.2007.09.003 [DOI: 10.1016/j.semcdb.2007.09.003]
  80. Man YH, Liu YH, Xiong CZ, Zhang Y, Zhang L (2023)  Non-lethal concentrations of CdCl2 cause marked alternations in cellular stress responses within exposed sertoli cell line. Toxics 11(2):167 [DOI: 10.3390/toxics11020167]
  81. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509(7498):105���109. https://doi.org/10.1038/nature13148 [DOI: 10.1038/nature13148]
  82. Martinez-Garcia GG, Marino G (2020) Autophagy role in environmental pollutants exposure. Prog Mol Biol Transl Sci 172:257���291. https://doi.org/10.1016/bs.pmbts.2020.02.003 [DOI: 10.1016/bs.pmbts.2020.02.003]
  83. McElroy JA, Kruse RL, Guthrie J, Gangnon RE, Robertson JD (2017) Cadmium exposure and endometrial cancer risk: a large midwestern U.S. population-based case-control study. PLoS ONE 12(7):e0179360. https://doi.org/10.1371/journal.pone.0179360 [DOI: 10.1371/journal.pone.0179360]
  84. Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T (2001) Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 152(4):657���668. https://doi.org/10.1083/jcb.152.4.657 [DOI: 10.1083/jcb.152.4.657]
  85. Nieto-Torres JL, Zaretski S, Liu T, Adams PD, Hansen M (2023) Post-translational modifications of ATG8 proteins - an emerging mechanism of autophagy control. J Cell Sci 136(16). https://doi.org/10.1242/jcs.259725
  86. Niture S, Lin M, Qi Q, Moore JT, Levine KE, Fernando RA, Kumar D (2021) Role of autophagy in cadmium-induced hepatotoxicity and liver diseases. J Toxicol. https://doi.org/10.1155/2021/9564297 [DOI: 10.1155/2021/9564297]
  87. Nguyen TG, Honson NS, Arns S, Davis TL, Dhe-Paganon S, Kovacic S, Kumar NS, Pfeifer TA, Young RN (2014) Development of fluorescent substrates and assays for the key autophagy-related cysteine protease enzyme, ATG4B. Assay Drug Dev Technol 12(3):176���189. https://doi.org/10.1089/adt.2013.561 [DOI: 10.1089/adt.2013.561]
  88. Nordberg M, Nordberg GF (2022) Metallothionein and cadmium toxicology-historical review and commentary. Biomolecules. https://doi.org/10.3390/biom12030360 [DOI: 10.3390/biom12030360]
  89. Nordberg GF, Bernard A, Diamond GL, Duffus JH, Illing P, Nordberg M, Bergdahl IA, Jin T, Skerfving S (2018) Risk assessment of effects of cadmium on human health (IUPAC technical report). Pure Appl Chem 90(4):755���808. https://doi.org/10.1515/pac-2016-0910 [DOI: 10.1515/pac-2016-0910]
  90. Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M (2023) Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 8(1):375. https://doi.org/10.1038/s41392-023-01608-z [DOI: 10.1038/s41392-023-01608-z]
  91. Peana M, Pelucelli A, Medici S, Cappai R, Nurchi VM, Zoroddu MA (2021) Metal toxicity and speciation: a review. Curr Med Chem 28(35):7190���7208. https://doi.org/10.2174/0929867328666210324161205 [DOI: 10.2174/0929867328666210324161205]
  92. Phadwal K, Feng D, Zhu DX, MacRae VE (2020)  Autophagy as a novel therapeutic target in vascular calcification. Pharmacol Therapeutics 206:107430 [DOI: 10.1016/j.pharmthera.2019.107430]
  93. Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, Tian L, He M, Lu Y, Li M, Zhang Y, Zhong M, Xiang Y, Deng L, Zhou Z, Yu Z (2013) Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy 9(11):1780���1800. https://doi.org/10.4161/auto.25665 [DOI: 10.4161/auto.25665]
  94. Pi H, Li M, Tian L, Yang Z, Yu Z, Zhou Z (2017) Enhancing lysosomal biogenesis and autophagic flux by activating the transcription factor EB protects against cadmium-induced neurotoxicity. Sci Rep 7:43466. https://doi.org/10.1038/srep43466 [DOI: 10.1038/srep43466]
  95. Prozialeck WC, Edwards JR (2012) Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther 343(1):2���12. https://doi.org/10.1124/jpet.110.166769 [DOI: 10.1124/jpet.110.166769]
  96. Qi Z, Chen L (2019) Endoplasmic reticulum stress and Autophagy. Adv Exp Med Biol 1206:167���177. https://doi.org/10.1007/978-981-15-0602-4_8 [DOI: 10.1007/978-981-15-0602-4_8]
  97. Rahman MA, Rahman MS, Parvez MAK, Kim B (2023) The emerging role of autophagy as a target of environmental pollutants: an update on mechanisms. Toxics 11(2):135 [DOI: 10.3390/toxics11020135]
  98. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863(12):2977���2992. https://doi.org/10.1016/j.bbamcr.2016.09.012 [DOI: 10.1016/j.bbamcr.2016.09.012]
  99. Rosales-Cruz P, Dominguez-Perez M, Reyes-Zarate E, Bello-Monroy O, Enriquez-Cortina C, Miranda-Labra R, Bucio L, Gomez-Quiroz LE, Rojas-Del Castillo E, Gutierrez-Ruiz MC, Souza-Arroyo V (2018) Cadmium exposure exacerbates hyperlipidemia in cholesterol-overloaded hepatocytes via autophagy dysregulation. Toxicology. https://doi.org/10.1016/j.tox.2018.02.007 [DOI: 10.1016/j.tox.2018.02.007]
  100. Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23(5):897���926. https://doi.org/10.1007/s10534-010-9351-z [DOI: 10.1007/s10534-010-9351-z]
  101. Sadeghzadeh H, Dianat-Moghadam H, Bakhshayesh D, Mohammadnejad AR, D., Mehdipour A (2023) A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem Cell Res Ther 14(1):194. https://doi.org/10.1186/s13287-023-03426-0 [DOI: 10.1186/s13287-023-03426-0]
  102. Satarug S (2018) Dietary Cadmium Intake and Its Effects on Kidneys. Toxics. https://doi.org/10.3390/toxics6010015 [DOI: 10.3390/toxics6010015]
  103. Satarug S, Baker JR, Urbenjapol S, Haswell-Elkins M, Reilly PE, Williams DJ, Moore MR (2003) A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett 137(1���2):65���83. https://doi.org/10.1016/s0378-4274(02)00381-8 [DOI: 10.1016/s0378-4274(02)00381-8]
  104. Satir S (2022) The relationship between oral cancer and cadmium: a review. Mol Biol Rep 49(3):2413���2419. https://doi.org/10.1007/s11033-021-07000-w [DOI: 10.1007/s11033-021-07000-w]
  105. Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91���99. https://doi.org/10.1016/j.ccr.2004.06.007 [DOI: 10.1016/j.ccr.2004.06.007]
  106. Shin DW (2020) Lipophagy: Molecular mechanisms and implications in Metabolic disorders. Mol Cells 43(8):686���693. https://doi.org/10.14348/molcells.2020.0046 [DOI: 10.14348/molcells.2020.0046]
  107. So KY, Lee BH, Oh SH (2018) The critical role of autophagy in cadmium-induced immunosuppression regulated by endoplasmic reticulum stress-mediated calpain activation in RAW264.7 mouse monocytes. Toxicology 393:15���25. https://doi.org/10.1016/j.tox.2017.10.016 [DOI: 10.1016/j.tox.2017.10.016]
  108. So KY, Park BH, Oh SH (2021) Cytoplasmic sirtuin 6 translocation mediated by p62 polyubiquitination plays a critical role in cadmium-induced kidney toxicity. Cell Biol Toxicol 37(2):193���207. https://doi.org/10.1007/s10565-020-09528-2 [DOI: 10.1007/s10565-020-09528-2]
  109. Song J, Luo H, Yin X, Huang G, Luo S, Lin du R, Yuan DB, Zhang W, Zhu J (2015) Association between cadmium exposure and renal cancer risk: a meta-analysis of observational studies. Sci Rep 5:17976. https://doi.org/10.1038/srep17976 [DOI: 10.1038/srep17976]
  110. Song S, Tan J, Miao Y, Li M, Zhang Q (2017) Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress. J Cell Physiol 232(11):2977���2984. https://doi.org/10.1002/jcp.25785 [DOI: 10.1002/jcp.25785]
  111. Sun M, Jiang Z, Gu P, Guo B, Li J, Cheng S, Ba Q, Wang H (2023) Cadmium promotes colorectal cancer metastasis through EGFR/Akt/mTOR signaling cascade and dynamics. Sci Total Environ 899:165699. https://doi.org/10.1016/j.scitotenv.2023.165699 [DOI: 10.1016/j.scitotenv.2023.165699]
  112. Surolia R, Karki S, Kim H, Yu Z, Kulkarni T, Mirov SB, Carter AB, Rowe SM, Matalon S, Thannickal VJ, Agarwal A, Antony VB (2015) Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. Am J Physiol Lung Cell Mol Physiol 309(3):L280���292. https://doi.org/10.1152/ajplung.00097.2015 [DOI: 10.1152/ajplung.00097.2015]
  113. Tai YT, Chou SH, Cheng CY, Ho CT, Lin HC, Jung SM, Chu PH, Ko FH (2022) The preferential accumulation of cadmium ions among various tissues in mice. Toxicol Rep 9:111���119. https://doi.org/10.1016/j.toxrep.2022.01.002 [DOI: 10.1016/j.toxrep.2022.01.002]
  114. Thevenod F (2003) Nephrotoxicity and the proximal tubule. Insights from cadmium. Nephron Physiol 93(4):87���93. https://doi.org/10.1159/000070241 [DOI: 10.1159/000070241]
  115. Thevenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743���1786. https://doi.org/10.1007/s00204-013-1110-9 [DOI: 10.1007/s00204-013-1110-9]
  116. Thevenod F, Wolff NA (2016) Iron transport in the kidney: implications for physiology and cadmium nephrotoxicity. Metallomics 8(1):17���42. https://doi.org/10.1039/c5mt00215j [DOI: 10.1039/c5mt00215j]
  117. Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV (2018) Gut as a target for cadmium toxicity. Environ Pollut 235:429���434. https://doi.org/10.1016/j.envpol.2017.12.114 [DOI: 10.1016/j.envpol.2017.12.114]
  118. Tong X, Yu G, Liu Q, Zhang X, Bian J, Liu Z, Gu J (2022) Puerarin alleviates cadmium-induced oxidative damage to bone by reducing autophagy in rats. Environ Toxicol 37(4):720���729. https://doi.org/10.1002/tox.23437 [DOI: 10.1002/tox.23437]
  119. Tsapras P, Nezis IP (2017) Caspase involvement in autophagy. Cell Death Differ 24(8):1369���1379. https://doi.org/10.1038/cdd.2017.43 [DOI: 10.1038/cdd.2017.43]
  120. Tu BP, Weissman JS (2004) Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol 164(3):341���346. https://doi.org/10.1083/jcb.200311055 [DOI: 10.1083/jcb.200311055]
  121. Tuffour A, Kosiba AA, Peprah FA, Gu J, Zhou Y, Shi HF (2023) Cadmium-induced stress: a close look at the relationship between autophagy and apoptosis. Toxicol Sci. https://doi.org/10.1093/toxsci/kfad045 [DOI: 10.1093/toxsci/kfad045]
  122. Tyagi A, Chandrasekaran B, Navin AK, Shukla V, Baby BV, Ankem MK, Damodaran C (2023) Molecular interplay between NOX1 and autophagy in cadmium-induced prostate carcinogenesis. Free Radic Biol Med 199:44���55. https://doi.org/10.1016/j.freeradbiomed.2023.02.007 [DOI: 10.1016/j.freeradbiomed.2023.02.007]
  123. Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79(1���4):241���244. https://doi.org/10.1016/s0162-0134(00)00009-x [DOI: 10.1016/s0162-0134(00)00009-x]
  124. Waalkes MP, Rehm S, Cherian MG (2000) Repeated cadmium exposures enhance the malignant progression of ensuing tumors in rats. Toxicol Sci 54(1):110���120. https://doi.org/10.1093/toxsci/54.1.110 [DOI: 10.1093/toxsci/54.1.110]
  125. Wang Y, Zhang H (2019) Regulation of Autophagy by mTOR Signaling Pathway. Adv Exp Med Biol 1206:67���83. https://doi.org/10.1007/978-981-15-0602-4_3 [DOI: 10.1007/978-981-15-0602-4_3]
  126. Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36(11):1434���1443. https://doi.org/10.1016/j.freeradbiomed.2004.03.010 [DOI: 10.1016/j.freeradbiomed.2004.03.010]
  127. Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65(22):3640���3652. https://doi.org/10.1007/s00018-008-8383-9 [DOI: 10.1007/s00018-008-8383-9]
  128. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G, White M, Reichelt J, Levine B (2012) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338(6109):956���959. https://doi.org/10.1126/science.1225967 [DOI: 10.1126/science.1225967]
  129. Wang Y, Mandal AK, Son YO, Pratheeshkumar P, Wise JTF, Wang L, Zhang Z, Shi X, Chen Z (2018) Roles of ROS, Nrf2, and autophagy in cadmium-carcinogenesis and its prevention by sulforaphane. Toxicol Appl Pharmacol 353:23���30. https://doi.org/10.1016/j.taap.2018.06.003 [DOI: 10.1016/j.taap.2018.06.003]
  130. Wang C, Nie G, Zhuang Y, Hu R, Wu H, Xing C, Li G, Hu G, Yang F, Zhang C (2020a) Inhibition of autophagy enhances cadmium-induced apoptosis in duck renal tubular epithelial cells. Ecotoxicol Environ Saf 205:111188. https://doi.org/10.1016/j.ecoenv.2020.111188 [DOI: 10.1016/j.ecoenv.2020.111188]
  131. Wang M, Wang XF, Li YM, Chen N, Fan Y, Huang WK, Hu SF, Rao M, Zhang YZ, Su P (2020b) Cross-talk between autophagy and apoptosis regulates testicular injury/recovery induced by cadmium via PI3K with mTOR-independent pathway. Cell Death Dis 11(1):46. https://doi.org/10.1038/s41419-020-2246-1 [DOI: 10.1038/s41419-020-2246-1]
  132. Wang Q, Pan S, Jiang Q, Li L, Tu W, Zhang Q, Zhou X (2021) CircSPAG16 suppresses cadmium-induced transformation of human bronchial epithelial cells by decoying PIP5K1alpha to inactivate Akt. Mol Carcinog 60(8):582���594. https://doi.org/10.1002/mc.23325 [DOI: 10.1002/mc.23325]
  133. Wang H, Wang A, Wang X, Zeng X, Xing H (2022a) AMPK/PPAR-gamma/NF-kappaB axis participates in ROS-mediated apoptosis and autophagy caused by cadmium in pig liver. Environ Pollut 294:118659. https://doi.org/10.1016/j.envpol.2021.118659 [DOI: 10.1016/j.envpol.2021.118659]
  134. Wang L, Fei J, Wang XM, Xie GF, Cao P, Zhang C, Zhao H, Fu L, Cao W (2022b) Environmental cadmium positively correlates with autophagy and apoptosis in chronic obstructive pulmonary disease patients. Atmospheric Pollution Research 13(1):101275. https://doi.org/10.1016/j.apr.2021.101275 [DOI: 10.1016/j.apr.2021.101275]
  135. Wang S, Li H, Yuan M, Fan H, Cai Z (2022c) Role of AMPK in autophagy. Front Physiol 13:1015500. https://doi.org/10.3389/fphys.2022.1015500 [DOI: 10.3389/fphys.2022.1015500]
  136. Wang Z, Li D, Mo L, Liang S, Liao X, Guo S, Yang X, Wei Q (2022d) Low-dose cadmium exposure promotes osteoclastogenesis by enhancing autophagy via inhibiting the mTOR/p70S6K1 signaling pathway. Toxicol Lett 367:9���18. https://doi.org/10.1016/j.toxlet.2022.07.005 [DOI: 10.1016/j.toxlet.2022.07.005]
  137. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 29(11):1792���1802. https://doi.org/10.1038/emboj.2010.74 [DOI: 10.1038/emboj.2010.74]
  138. Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2(1):21���33. https://doi.org/10.1016/j.cmet.2005.06.005 [DOI: 10.1016/j.cmet.2005.06.005]
  139. Xu HD, Qin ZH (2019) Beclin 1, Bcl-2 and autophagy. Adv Exp Med Biol 1206:109���126. https://doi.org/10.1007/978-981-15-0602-4_5 [DOI: 10.1007/978-981-15-0602-4_5]
  140. Yamamoto H, Zhang S, Mizushima N (2023) Autophagy genes in biology and disease. Nat Rev Genet 24(6):382���400. https://doi.org/10.1038/s41576-022-00562-w [DOI: 10.1038/s41576-022-00562-w]
  141. Yorimitsu T, Nair U, Yang Z, Klionsky DJ (2006) Endoplasmic reticulum stress triggers autophagy. J Biol Chem 281(40):30299���30304. https://doi.org/10.1074/jbc.M607007200 [DOI: 10.1074/jbc.M607007200]
  142. Yu ZM, Wan XM, Xiao M, Zheng C, Zhou XL (2021)  Puerarin induces Nrf2 as a cytoprotective mechanism to prevent cadmium-induced autophagy inhibition and NLRP3 inflammasome activation in AML12 hepatic cells. J Inorg Biochem 217:111389 [DOI: 10.1016/j.jinorgbio.2021.111389]
  143. Yuan J, Zhao Y, Bai Y, Gu J, Yuan Y, Liu X, Liu Z, Zou H, Bian J (2021) Cadmium induces endosomal/lysosomal enlargement and blocks autophagy flux in rat hepatocytes by damaging microtubules. Ecotoxicol Environ Saf 228:112993. https://doi.org/10.1016/j.ecoenv.2021.112993 [DOI: 10.1016/j.ecoenv.2021.112993]
  144. Zhang L, Xia Q, Zhou Y, Li J (2019) Endoplasmic reticulum stress and autophagy contribute to cadmium-induced cytotoxicity in retinal pigment epithelial cells. Toxicol Lett 311:105���113. https://doi.org/10.1016/j.toxlet.2019.05.001 [DOI: 10.1016/j.toxlet.2019.05.001]
  145. Zhang C, Wang LL, Cao CY, Li N, Talukder M, Li JL (2020) Selenium mitigates cadmium-induced crosstalk between autophagy and endoplasmic reticulum stress via regulating calcium homeostasis in avian leghorn male hepatoma (LMH) cells. Environ Pollut 265(Pt A):114613. https://doi.org/10.1016/j.envpol.2020.114613 [DOI: 10.1016/j.envpol.2020.114613]
  146. Zhao CJ, Yu D, He ZQ, Bao LJ, Feng LJ, Chen LT, Liu ZY, Hu XY, Zhang NS, Wang TJ, Fu YH (2021) Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells. Free Radic Biol Med 175:236���248. https://doi.org/10.1016/j.freeradbiomed.2021.09.008 [DOI: 10.1016/j.freeradbiomed.2021.09.008]
  147. Zellner S, Schifferer M, Behrends C (2021) Systematically defining selective autophagy receptor-specific cargo using autophagosome content profiling. Mol Cell 81(6):1337���1354. https://doi.org/10.1016/j.molcel.2021.01.009 [DOI: 10.1016/j.molcel.2021.01.009]
  148. Zhen Y, Stenmark H (2023) Autophagosome Biogenesis. Cells:12(4). https://doi.org/10.3390/cells12040668
  149. Zheng Q, Chen Y, Chen D, Zhao H, Feng Y, Meng Q, Zhao Y, Zhang H (2022) Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell 185(22):4082���4098e4022. https://doi.org/10.1016/j.cell.2022.09.001 [DOI: 10.1016/j.cell.2022.09.001]
  150. Zou H, Wang L, Zhao J, Yuan Y, Wang T, Bian J, Liu Z (2021) MiR-155 promotes cadmium-induced autophagy in rat hepatocytes by suppressing Rheb expression. Ecotoxicol Environ Saf 227:112895. https://doi.org/10.1016/j.ecoenv.2021.112895 [DOI: 10.1016/j.ecoenv.2021.112895]

Grants

  1. 81973086/National Natural Science Foundation of China
  2. 2023A1515010542/GuangDong Basic and Applied Basic Research Foundation

MeSH Term

Autophagy
Humans
Cadmium
Animals
Endoplasmic Reticulum Stress
Signal Transduction
Environmental Pollutants

Word Cloud

Created with Highcharts 10.0.0CdtoxicityAutophagyautophagyreviewCadmiummechanismCd-inducedhumanrepresentstoxiceffectshumansdifficultrespiratoryforeignstressassociatedmolecularincludingpathwayspathwayimportantenvironmentalpollutantposesthreathealthcriticalcomponentairpollutantsfoodsourcescigarettesmokeknowncarcinogenenvironmentvariousorgansHeavymetalswithinorganismbiodegradeentertractremovekeycounteractingextracellularmicroorganismsbodiesintracellulardamagedorganellesproteinsdegradedproteasomeself-protectiveeukaryotesheavymetalmaintainscellularhomeostasisisolatinggatheringinformationchemicalseventsHowevermaytriggercelldeathcertainpathologicalconditionscancerdysfunctiononemainmechanismsunderlyingcytotoxicitydifferentorgansystemsevaluatedfocushepatotoxicitynephrotoxicityneurotoxicityalsohighlightedclassicalROS-dependentsignalingendoplasmicreticulumERMammaliantargetrapamycinmTORBeclin-1Bcl-2familyrecentlyidentifiedmoleculesMoreoverresearchdirectionsregardingautophagicfunctionproposedpresentslatesttheoriescomprehensivelyrevealbehaviorresponseproposesnovelpotentialautophagy-targetedpreventiontreatmentstrategiesCd-associateddiseasesautophagy:CellfateToxic

Similar Articles

Cited By