Spatial Localization of Defects in Halide Perovskites Using Photothermal Deflection Spectroscopy.

Ales Vlk, Zdenek Remes, Lucie Landova, Katarina Ridzonova, Robert Hlavac, Antonin Fejfar, Martin Ledinsky
Author Information
  1. Ales Vlk: Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200 Prague, Czech Republic. ORCID
  2. Zdenek Remes: Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200 Prague, Czech Republic. ORCID
  3. Lucie Landova: Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200 Prague, Czech Republic.
  4. Katarina Ridzonova: Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200 Prague, Czech Republic.
  5. Robert Hlavac: Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200 Prague, Czech Republic.
  6. Antonin Fejfar: Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200 Prague, Czech Republic.
  7. Martin Ledinsky: Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200 Prague, Czech Republic. ORCID

Abstract

Photothermal deflection spectroscopy (PDS) emerges as a highly sensitive noncontact technique for measuring absorption spectra and serves for studying defect states within semiconductor thin films. In our study, we applied PDS to methylammonium lead bromide single crystals. By analyzing the frequency dependence of the PDS spectra and the phase difference of the signal, we can differentiate between surface and bulk deep defect absorption states. This methodology allowed us to investigate the effects of bismuth doping and light-induced degradation. The identified absorption states are attributed to MA vibrational states and structural defects, and their influence on the nonradiative recombination probability is discussed. This distinction significantly enhances our capability to characterize and analyze perovskite materials at a deeper level.

References

  1. Opt Lett. 1980 Sep 1;5(9):377 [PMID: 19693234]
  2. J Phys Chem Lett. 2015 Aug 6;6(15):2913-8 [PMID: 26267180]
  3. J Phys Chem Lett. 2017 Feb 16;8(4):838-843 [PMID: 28121155]
  4. J Phys Chem Lett. 2016 Jan 21;7(2):295-301 [PMID: 26727130]
  5. J Phys Chem Lett. 2015 Oct 1;6(19):3781-6 [PMID: 26722870]
  6. J Phys Chem Lett. 2020 May 7;11(9):3681-3688 [PMID: 32302145]
  7. J Phys Chem Lett. 2018 Mar 1;9(5):939-946 [PMID: 29409323]
  8. Appl Opt. 1981 Apr 15;20(8):1333-44 [PMID: 20309309]
  9. J Phys Chem Lett. 2022 Aug 25;13(33):7702-7711 [PMID: 35960888]
  10. Nano Lett. 2017 Sep 13;17(9):5734-5739 [PMID: 28806090]
  11. J Phys Chem Lett. 2014 Mar 20;5(6):1035-9 [PMID: 26270984]

Word Cloud

Created with Highcharts 10.0.0statesPDSabsorptionPhotothermalspectradefectdeflectionspectroscopyemergeshighlysensitivenoncontacttechniquemeasuringservesstudyingwithinsemiconductorthinfilmsstudyappliedmethylammoniumleadbromidesinglecrystalsanalyzingfrequencydependencephasedifferencesignalcandifferentiatesurfacebulkdeepmethodologyallowedusinvestigateeffectsbismuthdopinglight-induceddegradationidentifiedattributedMAvibrationalstructuraldefectsinfluencenonradiativerecombinationprobabilitydiscusseddistinctionsignificantlyenhancescapabilitycharacterizeanalyzeperovskitematerialsdeeperlevelSpatialLocalizationDefectsHalidePerovskitesUsingDeflectionSpectroscopy

Similar Articles

Cited By

No available data.