An ultra high-throughput, massively multiplexable, single-cell RNA-seq platform in yeasts.

Leandra Brettner, Rachel Eder, Kara Schmidlin, Kerry Geiler-Samerotte
Author Information
  1. Leandra Brettner: Biodesign Institute Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA.
  2. Rachel Eder: Biodesign Institute Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA.
  3. Kara Schmidlin: Biodesign Institute Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA.
  4. Kerry Geiler-Samerotte: Biodesign Institute Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA.

Abstract

Yeasts are naturally diverse, genetically tractable, and easy to grow such that researchers can investigate any number of genotypes, environments, or interactions thereof. However, studies of yeast transcriptomes have been limited by the processing capabilities of traditional RNA sequencing techniques. Here we optimize a powerful, high-throughput single-cell RNA sequencing (scRNAseq) platform, SPLiT-seq (Split Pool Ligation-based Transcriptome sequencing), for yeasts and apply it to 43,388 cells of multiple species and ploidies. This platform utilizes a combinatorial barcoding strategy to enable massively parallel RNA sequencing of hundreds of yeast genotypes or growth conditions at once. This method can be applied to most species or strains of yeast for a fraction of the cost of traditional scRNAseq approaches. Thus, our technology permits researchers to leverage "the awesome power of yeast" by allowing us to survey the transcriptome of hundreds of strains and environments in a short period of time and with no specialized equipment. The key to this method is that sequential barcodes are probabilistically appended to cDNA copies of RNA while the molecules remain trapped inside of each cell. Thus, the transcriptome of each cell is labeled with a unique combination of barcodes. Since SPLiT-seq uses the cell membrane as a container for this reaction, many cells can be processed together without the need to physically isolate them from one another in separate wells or droplets. Further, the first barcode in the sequence can be chosen intentionally to identify samples from different environments or genetic backgrounds, enabling multiplexing of hundreds of unique perturbations in a single experiment. In addition to greater multiplexing capabilities, our method also facilitates a deeper investigation of biological heterogeneity, given its single-cell nature. For example, in the data presented here, we detect transcriptionally distinct cell states related to cell cycle, ploidy, metabolic strategies, and so forth, all within clonal yeast populations grown in the same environment. Hence, our technology has two obvious and impactful applications for yeast research: the first is the general study of transcriptional phenotypes across many strains and environments, and the second is investigating cell-to-cell heterogeneity across the entire transcriptome.

Keywords

References

  1. Cell. 2018 Oct 4;175(2):544-557.e16 [PMID: 30245013]
  2. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  3. Cell. 2023 Feb 16;186(4):877-891.e14 [PMID: 36708705]
  4. Cell. 2021 Jun 24;184(13):3573-3587.e29 [PMID: 34062119]
  5. Commun Biol. 2021 Jun 30;4(1):822 [PMID: 34193958]
  6. Science. 2016 Sep 23;353(6306): [PMID: 27708008]
  7. Nature. 2018 Apr;556(7701):339-344 [PMID: 29643504]
  8. Mol Biol Cell. 2000 Dec;11(12):4241-57 [PMID: 11102521]
  9. Nature. 2009 Mar 19;458(7236):337-41 [PMID: 19212322]
  10. Trends Biochem Sci. 1999 Nov;24(11):437-40 [PMID: 10542411]
  11. Nat Microbiol. 2019 Apr;4(4):683-692 [PMID: 30718850]
  12. Science. 2021 Feb 19;371(6531): [PMID: 33335020]
  13. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  14. F1000Res. 2016 Feb 17;5: [PMID: 26949524]
  15. Elife. 2020 May 18;9: [PMID: 32420869]
  16. Nature. 2020 Jul;583(7817):585-589 [PMID: 32669716]
  17. Cell. 2016 Dec 15;167(7):1853-1866.e17 [PMID: 27984732]
  18. Elife. 2020 Jan 27;9: [PMID: 31985403]
  19. Dev Cell. 2022 Feb 28;57(4):466-479.e6 [PMID: 35231427]
  20. Science. 2018 Apr 13;360(6385):176-182 [PMID: 29545511]
  21. Mol Cell. 2015 May 21;58(4):610-20 [PMID: 26000846]
  22. Curr Protoc Mol Biol. 2013 Jul;Chapter 4:Unit 4.19 [PMID: 23821444]
  23. BMC Genomics. 2008 Nov 29;9:574 [PMID: 19040753]
  24. Nucleic Acids Res. 2012 Jan;40(Database issue):D700-5 [PMID: 22110037]
  25. Nature. 2015 Mar 12;519(7542):181-6 [PMID: 25731169]
  26. G3 (Bethesda). 2011 Jun;1(1):11-25 [PMID: 22384314]
  27. Science. 2017 Aug 18;357(6352):661-667 [PMID: 28818938]
  28. Vaccines (Basel). 2021 Dec 27;10(1): [PMID: 35062691]
  29. Nature. 2002 Jul 25;418(6896):387-91 [PMID: 12140549]
  30. Elife. 2020 Dec 02;9: [PMID: 33263280]
  31. Appl Microbiol Biotechnol. 2003 May;61(3):197-205 [PMID: 12698276]
  32. Nat Commun. 2019 Apr 3;10(1):1523 [PMID: 30944313]
  33. PLoS Biol. 2015 Aug 07;13(8):e1002221 [PMID: 26252643]
  34. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]

Grants

  1. R35 GM133674/NIGMS NIH HHS
  2. R35GM133674/NIH HHS

MeSH Term

Gene Expression Profiling
Single-Cell Gene Expression Analysis
Saccharomyces cerevisiae
Transcriptome
High-Throughput Nucleotide Sequencing

Word Cloud

Created with Highcharts 10.0.0yeastRNAsequencingcellcanenvironmentssingle-cellplatformhundredsmethodstrainstranscriptomeresearchersgenotypescapabilitiestraditionalhigh-throughputscRNAseqSPLiT-seqyeastscellsspeciesmassivelyThustechnologybarcodesuniquemanyfirstmultiplexingheterogeneityacrossYeastsnaturallydiversegeneticallytractableeasygrowinvestigatenumberinteractionsthereofHoweverstudiestranscriptomeslimitedprocessingtechniquesoptimizepowerfulSplitPoolLigation-basedTranscriptomeapply43388multipleploidiesutilizescombinatorialbarcodingstrategyenableparallelgrowthconditionsappliedfractioncostapproachespermitsleverage"theawesomepoweryeast"allowingussurveyshortperiodtimespecializedequipmentkeysequentialprobabilisticallyappendedcDNAcopiesmoleculesremaintrappedinsidelabeledcombinationSinceusesmembranecontainerreactionprocessedtogetherwithoutneedphysicallyisolateoneanotherseparatewellsdropletsbarcodesequencechosenintentionallyidentifysamplesdifferentgeneticbackgroundsenablingperturbationssingleexperimentadditiongreateralsofacilitatesdeeperinvestigationbiologicalgivennatureexampledatapresenteddetecttranscriptionallydistinctstatesrelatedcycleploidymetabolicstrategiesforthwithinclonalpopulationsgrownenvironmentHencetwoobviousimpactfulapplicationsresearch:generalstudytranscriptionalphenotypessecondinvestigatingcell-to-cellentireultramultiplexableRNA-seqCandidaalbicansSaccharomycescerevisiaehigh‐throughputlow‐costsingle‐cell

Similar Articles

Cited By