Genomic characterization of isolated from food poisoning cases revealed the mechanism of toxin production.

Qian Zhou, Guanqiao Li, Yinshan Cui, Jingshu Xiang, Shu Zhu, Shijun Li, Jingyu Huang, Yafang Wang, Ying Liu, Li Zhou
Author Information
  1. Qian Zhou: Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China.
  2. Guanqiao Li: College of Bioinformatics, Chongqing University of Post and Telecommunications, Chongqing, China.
  3. Yinshan Cui: Yunnan Pulis Biotechnology Co., Ltd., Kunming, Yunnan, China.
  4. Jingshu Xiang: Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China.
  5. Shu Zhu: Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China.
  6. Shijun Li: Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China.
  7. Jingyu Huang: Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China.
  8. Yafang Wang: Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China.
  9. Ying Liu: Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China.
  10. Li Zhou: Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, Guizhou, China.

Abstract

Introduction: is a ubiquitous opportunistic human pathogen that causes food intoxications worldwide. However, the genomic characteristics and pathogenic mechanisms of are still unclear.
Methods: Here, we isolated and purified nine strains of () that caused vomiting, diarrhea and other symptoms from four foodborne outbreaks happened in Guizhou Province in southwest China from June to September 2021. After colony observation, Gram staining, microscopic examination and biochemical test, they were identified as . The genomic characteristics, phylogenetic relationships and virulence factors of the isolated strains were analyzed at the genome level. Genome sequencing, comparative genomic analysis, secondary metabolite analysis and quantitative PCR were utilized to give a thorough exploration of the strains.
Results: We obtained the genome maps of and found that had a complex interspecific relationship with B. anthracis and . We also observed a contraction of gene families in , and the contracted families were mainly associated with prophage, which contributed to the species diversity of . The gene family underwent a rapid evolution in , which facilitated the adaptation of the strains to adverse environmental conditions. Moreover, the strains exhibited a higher copy number in the non-ribosomal polypeptide synthetase (NRPS) genes and carried the complete cereulide synthetase () gene cluster sequences. Considering that the system is a classical regulatory mechanism for emetic toxin synthesis, we hypothesized that could synthesize emetic toxins through the regulation of gene clusters by the system.
Discussion: These findings are important for further investigation into the evolutionary relationship between and their related species, as well as the underlying mechanisms governing the synthesis and secretion of bacterial toxins.

Keywords

References

  1. Front Microbiol. 2022 Nov 17;13:1009885 [PMID: 36478857]
  2. Foodborne Pathog Dis. 2021 Aug;18(8):510-518 [PMID: 34242111]
  3. Trends Microbiol. 2018 Dec;26(12):1035-1048 [PMID: 30193960]
  4. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  5. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  6. Bioinformatics. 2011 Apr 15;27(8):1164-5 [PMID: 21335321]
  7. Microbiol Spectr. 2020 Jan;8(1): [PMID: 31950894]
  8. Cell Microbiol. 2011 Jan;13(1):92-108 [PMID: 20731668]
  9. Res Microbiol. 2023 Jul-Aug;174(6):104077 [PMID: 37149077]
  10. BMC Microbiol. 2006 Mar 02;6:20 [PMID: 16512902]
  11. PLoS One. 2013;8(3):e60843 [PMID: 23556006]
  12. Mol Biol Evol. 2000 Apr;17(4):540-52 [PMID: 10742046]
  13. PLoS One. 2015 Jun 04;10(6):e0128569 [PMID: 26042597]
  14. Gut Pathog. 2021 Jan 30;13(1):6 [PMID: 33516253]
  15. Front Microbiol. 2015 Oct 13;6:1101 [PMID: 26528255]
  16. Appl Microbiol Biotechnol. 2016 Jun;100(11):4845-63 [PMID: 27102132]
  17. Biofilm. 2022 Feb 15;4:100070 [PMID: 35243332]
  18. Foodborne Pathog Dis. 2020 May;17(5):340-347 [PMID: 31738585]
  19. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  20. Food Microbiol. 2022 Aug;105:104025 [PMID: 35473978]
  21. Microbes Infect. 2000 Feb;2(2):189-98 [PMID: 10742691]
  22. Chem Asian J. 2009 May 4;4(5):688-98 [PMID: 19347893]
  23. Genome Biol. 2004;5(2):R12 [PMID: 14759262]
  24. Curr Opin Microbiol. 2019 Oct;51:88-96 [PMID: 31743841]
  25. mBio. 2020 Aug 25;11(4): [PMID: 32843545]
  26. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  27. Microbiol Spectr. 2019 May;7(3): [PMID: 31111815]
  28. Curr Opin Food Sci. 2021 Jun;39:152-159 [PMID: 34178607]
  29. Int J Mol Sci. 2022 Sep 29;23(19): [PMID: 36232797]
  30. FEMS Microbiol Rev. 2008 Jul;32(4):579-606 [PMID: 18422617]
  31. Sci Rep. 2015 May 27;5:10637 [PMID: 26013201]
  32. Infect Genet Evol. 2011 Aug;11(6):1218-24 [PMID: 21640849]
  33. Acta Crystallogr F Struct Biol Commun. 2014 Sep;70(Pt 9):1228-31 [PMID: 25195897]
  34. Nucleic Acids Res. 2022 Jan 7;50(D1):D912-D917 [PMID: 34850947]
  35. Yi Chuan. 2011 Oct;33(10):1057-66 [PMID: 21993280]
  36. J Am Chem Soc. 2006 Aug 23;128(33):10698-9 [PMID: 16910662]
  37. Toxins (Basel). 2021 Jan 28;13(2): [PMID: 33525722]
  38. Genomics. 2020 Nov;112(6):4254-4267 [PMID: 32679071]
  39. mSystems. 2017 Jun 27;2(3): [PMID: 28680972]
  40. Foodborne Pathog Dis. 2021 Aug;18(8):538-546 [PMID: 34339263]
  41. Int J Food Microbiol. 2008 Jan 31;121(2):195-200 [PMID: 18077041]
  42. Front Microbiol. 2016 Oct 25;7:1640 [PMID: 27826288]
  43. J Appl Microbiol. 2004;97(5):992-1000 [PMID: 15479414]
  44. Sci Adv. 2023 Feb 17;9(7):eade4770 [PMID: 36800421]
  45. Food Microbiol. 2022 May;103:103948 [PMID: 35082065]
  46. Front Microbiol. 2015 Jul 14;6:704 [PMID: 26236290]
  47. Appl Environ Microbiol. 2010 Feb;76(4):1232-40 [PMID: 20038713]
  48. Crit Rev Food Sci Nutr. 2022;62(28):7677-7702 [PMID: 33939559]
  49. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]

Word Cloud

Created with Highcharts 10.0.0strainsgenomicgeneisolatedanalysisfoodcharacteristicsmechanismsfoodbornevirulencegenomecomparativerelationshipfamiliesspeciessynthetasesystemmechanismemetictoxinsynthesistoxinsIntroduction:ubiquitousopportunistichumanpathogencausesintoxicationsworldwideHoweverpathogenicstillunclearMethods:purifiedninecausedvomitingdiarrheasymptomsfouroutbreakshappenedGuizhouProvincesouthwestChinaJuneSeptember2021colonyobservationGramstainingmicroscopicexaminationbiochemicaltestidentifiedphylogeneticrelationshipsfactorsanalyzedlevelGenomesequencingsecondarymetabolitequantitativePCRutilizedgivethoroughexplorationResults:obtainedmapsfoundcomplexinterspecificBanthracisalsoobservedcontractioncontractedmainlyassociatedprophagecontributeddiversityfamilyunderwentrapidevolutionfacilitatedadaptationadverseenvironmentalconditionsMoreoverexhibitedhighercopynumbernon-ribosomalpolypeptideNRPSgenescarriedcompletecereulideclustersequencesConsideringclassicalregulatoryhypothesizedsynthesizeregulationclustersDiscussion:findingsimportantinvestigationevolutionaryrelatedwellunderlyinggoverningsecretionbacterialGenomiccharacterizationpoisoningcasesrevealedproductionBacilluscereusoutbreakmetabolicpathwayfactor

Similar Articles

Cited By