Efficient and sustained locus editing in hematopoietic stem cells as a therapeutic approach for IPEX syndrome.

Swati Singh, Cole M Pugliano, Yuchi Honaker, Aidan Laird, M Quinn DeGottardi, Ezra Lopez, Stefan Lachkar, Claire Stoffers, Karen Sommer, Iram F Khan, David J Rawlings
Author Information
  1. Swati Singh: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  2. Cole M Pugliano: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  3. Yuchi Honaker: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  4. Aidan Laird: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  5. M Quinn DeGottardi: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  6. Ezra Lopez: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  7. Stefan Lachkar: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  8. Claire Stoffers: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  9. Karen Sommer: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  10. Iram F Khan: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.
  11. David J Rawlings: Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA.

Abstract

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a monogenic disorder caused by mutations in the gene, required for generation of regulatory T (T) cells. Loss of T cells leads to immune dysregulation characterized by multi-organ autoimmunity and early mortality. Hematopoietic stem cell (HSC) transplantation can be curative, but success is limited by autoimmune complications, donor availability and/or graft-vs.-host disease. Correction of FOXP3 in autologous HSC utilizing a homology-directed repair (HDR)-based platform may provide a safer alternative therapy. Here, we demonstrate efficient editing of utilizing co-delivery of Cas9 ribonucleoprotein complexes and adeno-associated viral vectors to achieve HDR rates of >40% using mobilized CD34 cells from multiple donors. Using this approach to deliver either a GFP or a FOXP3 cDNA donor cassette, we demonstrate sustained bone marrow engraftment of approximately 10% of HDR-edited cells in immune-deficient recipient mice at 16 weeks post-transplant. Further, we show targeted integration of FOXP3 cDNA in CD34 cells from an IPEX patient and expression of the introduced FOXP3 transcript in gene-edited primary T cells from both healthy individuals and IPEX patients. Our combined findings suggest that refinement of this approach is likely to provide future clinical benefit in IPEX.

Keywords

References

  1. Mol Ther. 2021 Nov 3;29(11):3205-3218 [PMID: 34509667]
  2. Mol Ther. 2021 Mar 03;29(3):1057-1069 [PMID: 33160457]
  3. Nat Biotechnol. 2018 Jan;36(1):95-102 [PMID: 29176614]
  4. Hum Gene Ther Methods. 2012 Feb;23(1):18-28 [PMID: 22428977]
  5. Pediatr Transplant. 2014 Feb;18(1):E25-30 [PMID: 24224516]
  6. PLoS One. 2008 Feb 20;3(2):e1612 [PMID: 18286169]
  7. J Cell Biol. 2011 Nov 28;195(5):709-20 [PMID: 22123859]
  8. Blood. 2005 Feb 15;105(4):1431-9 [PMID: 15494433]
  9. Nat Protoc. 2011 Apr;6(4):482-501 [PMID: 21455185]
  10. Sci Adv. 2020 May 06;6(19):eaaz0571 [PMID: 32494707]
  11. Front Immunol. 2018 Nov 01;9:2411 [PMID: 30443250]
  12. Eur J Immunol. 2007 Sep;37(9):2378-89 [PMID: 17694575]
  13. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10309-14 [PMID: 8816796]
  14. Blood. 2011 Jan 20;117(3):1061-70 [PMID: 20952687]
  15. Clin Immunol. 2011 Nov;141(2):169-76 [PMID: 21865090]
  16. Trends Biochem Sci. 2003 Apr;28(4):215-20 [PMID: 12713906]
  17. J Exp Med. 2007 Jul 9;204(7):1543-51 [PMID: 17591856]
  18. Nat Genet. 2001 Jan;27(1):20-1 [PMID: 11137993]
  19. Curr Protoc. 2022 Apr;2(4):e403 [PMID: 35384408]
  20. Mol Ther Nucleic Acids. 2018 Sep 7;12:89-104 [PMID: 30195800]
  21. Sci Transl Med. 2015 Nov 25;7(315):315ra189 [PMID: 26606968]
  22. Nat Med. 2018 Aug;24(8):1216-1224 [PMID: 30082871]
  23. J Exp Med. 2010 Apr 12;207(4):855-65 [PMID: 20368578]
  24. Nat Rev Genet. 2008 Feb;9(2):115-28 [PMID: 18202695]
  25. J Allergy Clin Immunol. 2018 Mar;141(3):1036-1049.e5 [PMID: 29241729]
  26. Science. 2014 Sep 19;345(6203):1509-12 [PMID: 25237102]
  27. Cell Stem Cell. 2019 Feb 7;24(2):309-317.e7 [PMID: 30639036]
  28. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6659-64 [PMID: 16617117]
  29. J Virol. 1998 Jan;72(1):309-19 [PMID: 9420229]
  30. Nature. 2010 Feb 11;463(7282):808-12 [PMID: 20072126]
  31. Gastroenterology. 2007 May;132(5):1705-17 [PMID: 17484868]
  32. Blood. 2009 Nov 5;114(19):4138-41 [PMID: 19738030]
  33. Nat Methods. 2017 Jun;14(6):607-614 [PMID: 28459458]
  34. Sci Transl Med. 2013 Dec 11;5(215):215ra174 [PMID: 24337481]
  35. Nat Biotechnol. 2020 Nov;38(11):1298-1308 [PMID: 32601433]
  36. J Clin Invest. 2000 Dec;106(12):R75-81 [PMID: 11120765]
  37. Nat Commun. 2019 Jun 28;10(1):2866 [PMID: 31253785]
  38. Nat Biotechnol. 2016 Jul 12;34(7):695-7 [PMID: 27404874]
  39. Sci Transl Med. 2020 Jun 3;12(546): [PMID: 32493794]
  40. Science. 2010 Sep 10;329(5997):1345-8 [PMID: 20688981]
  41. Science. 2012 Aug 17;337(6096):816-21 [PMID: 22745249]
  42. Mol Brain. 2014 Mar 11;7:17 [PMID: 24618276]
  43. J Pediatr. 1982 May;100(5):731-7 [PMID: 7040622]
  44. Nat Rev Mol Cell Biol. 2014 Jan;15(1):7-18 [PMID: 24326623]
  45. Blood. 2021 May 13;137(19):2598-2608 [PMID: 33623984]
  46. Science. 2013 Feb 15;339(6121):819-23 [PMID: 23287718]
  47. Cell Stem Cell. 2010 Aug 6;7(2):174-85 [PMID: 20619762]
  48. Blood. 2009 May 28;113(22):5689-91 [PMID: 19478054]
  49. J Allergy Clin Immunol. 2016 Mar;137(3):953-5.e4 [PMID: 26559324]
  50. Mol Ther. 2017 Feb 1;25(2):321-330 [PMID: 28153086]
  51. J Virol. 1995 Feb;69(2):748-55 [PMID: 7815539]

Word Cloud

Created with Highcharts 10.0.0IPEXcellsFOXP3editingTstemHSCapproachdysregulationsyndromegenecelldonorutilizingHDRprovidedemonstrateCD34cDNAsustainedhematopoieticImmunepolyendocrinopathyenteropathyX-linkedmonogenicdisordercausedmutationsrequiredgenerationregulatoryLossleadsimmunecharacterizedmulti-organautoimmunityearlymortalityHematopoietictransplantationcancurativesuccesslimitedautoimmunecomplicationsavailabilityand/orgraft-vs-hostdiseaseCorrectionautologoushomology-directedrepair-basedplatformmaysaferalternativetherapyefficientco-deliveryCas9ribonucleoproteincomplexesadeno-associatedviralvectorsachieverates>40%usingmobilizedmultipledonorsUsingdelivereitherGFPcassettebonemarrowengraftmentapproximately10%HDR-editedimmune-deficientrecipientmice16 weekspost-transplantshowtargetedintegrationpatientexpressionintroducedtranscriptgene-editedprimaryT cellshealthyindividualspatientscombinedfindingssuggestrefinementlikelyfutureclinicalbenefitEfficientlocustherapeuticCRISPR

Similar Articles

Cited By