Modulation of Metabolic Pathways and Protection against Cadmium-Induced Disruptions with Taxifolin-Enriched Extract.

Muhammad Fiaz Khalid, Muhammad Sajid Hamid Akash, Kanwal Rehman, Asif Shahzad, Ahmed Nadeem
Author Information
  1. Muhammad Fiaz Khalid: Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan.
  2. Muhammad Sajid Hamid Akash: Department of Pharmaceutical Chemistry, Government College University, Faisalabad 38000, Pakistan. ORCID
  3. Kanwal Rehman: Department of Pharmacy, The Women University, Multan 66000, Pakistan.
  4. Asif Shahzad: Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming 650031, Yunnan, China.
  5. Ahmed Nadeem: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.

Abstract

Cadmium, a ubiquitous environmental pollutant, has been implicated in the disruption of various metabolic pathways, contributing to the development of insulin resistance, glucose intolerance, and associated metabolic disorders. This study aimed to investigate the cadmium chloride (CdCl) exposure on metabolic pathways and to assess the potential therapeutic efficacy of the taxifolin-enriched extract in mitigating these disruptions by modulating biochemical pathways. Taxifolin-enriched extract (TEE) was prepared from bark using a green extraction method. About 60 Wistar albino rats were divided into six groups: the control group ( = 10), the CdCl group (30 mg/kg) ( = 10), and four groups (each comprises = 10) treated with 30 mg/kg CdCl in combination with metformin (100 mg/kg), ascorbic acid, taxifolin (30 mg/kg), and TEE (30 mg/kg), respectively. After the treatment period of 1 month, a comprehensive assessment of metabolic biomarkers and gene expressions that regulate the metabolism of carbohydrates and lipids was conducted to evaluate the impact of CdCl exposure and the potential protective effects of TEE. The results revealed that CdCl exposure significantly increased ( < 0.001) serum levels of ��-glucosidase, ��-amylase, insulin, G6PC, hexokinases, TGs, LDL, HMG-CoA reductase, and pro-inflammatory cytokines such as IL-6 and TNF-��. Conversely, CdCl exposure led to a reduction in HDL, antioxidant enzyme levels, phosphofructokinases, and glucose-6-phosphatase dehydrogenase. However, the administration of TEE alongside CdCl substantially mitigated ( < 0.001) these fluctuations in metabolic and inflammatory biomarker levels induced by CdCl exposure. Both TEE and taxifolin treatment effectively lowered the elevated levels of ��-amylase, ��-glucosidase, G6PC, insulin, TGs, HMG-CoA reductase, leptin, ALT, AST, blood urea nitrogen, creatinine, and pro-inflammatory cytokines while simultaneously enhancing levels of HDL cholesterol and antioxidant enzymes. Moreover, CdCl exposure suppressed mRNA expression of critical metabolic biomarkers such as glucose transporter 2 (GLUT2), insulin-like growth factor 1 (IGF-1), lactate dehydrogenase, and HMG-CoA lyases while upregulating the mRNA expression of angiotensin receptor 2 and vasopressin, key metabolic biomarkers involved in glucose metabolism and insulin regulation. TEE demonstrated the potential to restore normal metabolic functions and reduce the adverse impacts caused by CdCl exposure by mitigating disturbances in several metabolic pathways and restoring gene expression of critical metabolic biomarkers related to glucose metabolism and insulin regulation. Nevertheless, further investigation is warranted to comprehensively understand the underlying mechanisms and optimize the appropriate dosage and duration of TEE treatment for achieving the most effective therapeutic outcomes.

References

  1. Int J Biol Macromol. 2020 May 1;150:31-37 [PMID: 32035149]
  2. Int J Environ Res Public Health. 2020 May 26;17(11): [PMID: 32466586]
  3. Biomed Pharmacother. 2021 Oct;142:112004 [PMID: 34388527]
  4. Environ Health Perspect. 2010 Feb;118(2):182-90 [PMID: 20123617]
  5. Gene. 2023 Jul 30;875:147502 [PMID: 37224935]
  6. Toxicol Lett. 1989 Mar;46(1-3):153-62 [PMID: 2650022]
  7. Rev Med Chir Soc Med Nat Iasi. 2014 Apr-Jun;118(2):551-7 [PMID: 25076730]
  8. Mutat Res. 2003 Dec 10;533(1-2):107-20 [PMID: 14643415]
  9. Arch Toxicol. 2023 Jun;97(6):1823 [PMID: 37127682]
  10. Molecules. 2017 Jul 14;22(7): [PMID: 28708105]
  11. Biomolecules. 2022 Oct 23;12(11): [PMID: 36358896]
  12. Front Pharmacol. 2022 Mar 21;13:799064 [PMID: 35387354]
  13. EXCLI J. 2018 Mar 12;17:233-245 [PMID: 29743861]
  14. J Clin Med. 2023 Jan 22;12(3): [PMID: 36769524]
  15. Life Sci. 2020 Dec 15;263:118713 [PMID: 33157091]
  16. J Food Sci. 2020 Feb;85(2):260-267 [PMID: 31957884]
  17. Environ Int. 2022 Mar;161:107139 [PMID: 35172228]
  18. Arch Biochem Biophys. 2003 May 15;413(2):213-20 [PMID: 12729619]
  19. Environ Pollut. 2019 Dec;255(Pt 1):113155 [PMID: 31539850]
  20. J Trace Elem Med Biol. 2020 May 18;61:126552 [PMID: 32446210]
  21. Toxicol Mech Methods. 2020 Mar;30(3):167-176 [PMID: 31818169]
  22. Am J Physiol Renal Physiol. 2022 May 1;322(5):F470-F472 [PMID: 35285275]
  23. Int Immunopharmacol. 2023 Feb;115:109577 [PMID: 36584569]
  24. Antioxidants (Basel). 2021 Aug 24;10(9): [PMID: 34572963]
  25. Indian J Pharmacol. 2015 Jul-Aug;47(4):425-9 [PMID: 26288477]
  26. Toxics. 2023 Feb 26;11(3): [PMID: 36976988]
  27. Comp Biochem Physiol C Toxicol Pharmacol. 2023 Jun;268:109614 [PMID: 36940894]
  28. IMA Fungus. 2019 Jun 7;10:5 [PMID: 32647614]
  29. Sci Total Environ. 2022 Nov 25;849:157819 [PMID: 35931150]
  30. Environ Int. 2021 Apr;149:106406 [PMID: 33508533]
  31. Environ Int. 2022 Jan;158:106920 [PMID: 34628255]
  32. JBRA Assist Reprod. 2022 Nov 09;26(4):627-630 [PMID: 35916450]
  33. Biochimie. 2015 Apr;111:70-81 [PMID: 25698613]
  34. Bull Environ Contam Toxicol. 2021 Jan;106(1):65-74 [PMID: 33486543]
  35. Toxics. 2022 Feb 23;10(3): [PMID: 35324731]
  36. Am J Obstet Gynecol. 2022 May;226(5):607-632 [PMID: 34968458]
  37. Toxicol Res (Camb). 2022 Apr 01;11(2):339-347 [PMID: 35510236]
  38. Biol Trace Elem Res. 2022 Oct;200(10):4370-4384 [PMID: 34846673]
  39. Am J Transl Res. 2018 Apr 15;10(4):1205-1210 [PMID: 29736213]

Word Cloud

Created with Highcharts 10.0.0metabolicCdClexposureTEEinsulinmg/kglevelspathwaysglucose30biomarkerspotential=10treatmentmetabolismHMG-CoAexpressiontherapeuticextractmitigatinggrouptaxifolin1gene<0001��-glucosidase��-amylaseG6PCTGsreductasepro-inflammatorycytokinesHDLantioxidantdehydrogenasemRNAcritical2regulationCadmiumubiquitousenvironmentalpollutantimplicateddisruptionvariouscontributingdevelopmentresistanceintoleranceassociateddisordersstudyaimedinvestigatecadmiumchlorideassessefficacytaxifolin-enricheddisruptionsmodulatingbiochemicalTaxifolin-enrichedpreparedbarkusinggreenextractionmethod60Wistaralbinoratsdividedsixgroups:controlfourgroupscomprisestreatedcombinationmetformin100ascorbicacidrespectivelyperiodmonthcomprehensiveassessmentexpressionsregulatecarbohydrateslipidsconductedevaluateimpactprotectiveeffectsresultsrevealedsignificantlyincreasedserumhexokinasesLDLIL-6TNF-��Converselyledreductionenzymephosphofructokinasesglucose-6-phosphataseHoweveradministrationalongsidesubstantiallymitigatedfluctuationsinflammatorybiomarkerinducedeffectivelyloweredelevatedleptinALTASTbloodureanitrogencreatininesimultaneouslyenhancingcholesterolenzymesMoreoversuppressedtransporterGLUT2insulin-likegrowthfactorIGF-1lactatelyasesupregulatingangiotensinreceptorvasopressinkeyinvolveddemonstratedrestorenormalfunctionsreduceadverseimpactscauseddisturbancesseveralrestoringrelatedNeverthelessinvestigationwarrantedcomprehensivelyunderstandunderlyingmechanismsoptimizeappropriatedosagedurationachievingeffectiveoutcomesModulationMetabolicPathwaysProtectionCadmium-InducedDisruptionsTaxifolin-EnrichedExtract

Similar Articles

Cited By