Harnessing synthetic active particles for physical reservoir computing.

Xiangzun Wang, Frank Cichos
Author Information
  1. Xiangzun Wang: Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany.
  2. Frank Cichos: Peter Debye Institute for Soft Matter Physics, Leipzig University, 04103, Leipzig, Germany. cichos@physik.uni-leipzig.de. ORCID

Abstract

The processing of information is an indispensable property of living systems realized by networks of active processes with enormous complexity. They have inspired many variants of modern machine learning, one of them being reservoir computing, in which stimulating a network of nodes with fading memory enables computations and complex predictions. Reservoirs are implemented on computer hardware, but also on unconventional physical substrates such as mechanical oscillators, spins, or bacteria often summarized as physical reservoir computing. Here we demonstrate physical reservoir computing with a synthetic active microparticle system that self-organizes from an active and passive component into inherently noisy nonlinear dynamical units. The self-organization and dynamical response of the unit are the results of a delayed propulsion of the microswimmer to a passive target. A reservoir of such units with a self-coupling via the delayed response can perform predictive tasks despite the strong noise resulting from the Brownian motion of the microswimmers. To achieve efficient noise suppression, we introduce a special architecture that uses historical reservoir states for output. Our results pave the way for the study of information processing in synthetic self-organized active particle systems.

References

  1. Nat Commun. 2023 Jan 4;14(1):56 [PMID: 36599830]
  2. Science. 1977 Jul 15;197(4300):287-9 [PMID: 267326]
  3. Nat Commun. 2017 Apr 25;8:15169 [PMID: 28440273]
  4. Nat Commun. 2018 Sep 21;9(1):3864 [PMID: 30242284]
  5. Neural Netw. 2007 Apr;20(3):391-403 [PMID: 17517492]
  6. Neural Comput. 2002 Nov;14(11):2531-60 [PMID: 12433288]
  7. Neural Netw. 2019 Jul;115:100-123 [PMID: 30981085]
  8. Heliyon. 2018 Nov 23;4(11):e00938 [PMID: 30519653]
  9. Proc Natl Acad Sci U S A. 2021 Mar 9;118(10): [PMID: 33653956]
  10. Nat Commun. 2011 Sep 13;2:468 [PMID: 21915110]
  11. Nat Rev Neurosci. 2005 May;6(5):389-97 [PMID: 15861181]
  12. Phys Rev E. 2018 Apr;97(4-1):042202 [PMID: 29758606]
  13. Neuron. 2009 Aug 27;63(4):544-57 [PMID: 19709635]
  14. ACS Nano. 2021 Feb 23;15(2):3434-3440 [PMID: 33556235]
  15. Sci Rep. 2012;2:287 [PMID: 22371825]
  16. Nat Rev Neurosci. 2008 Apr;9(4):292-303 [PMID: 18319728]
  17. Opt Express. 2013 Jan 14;21(1):12-20 [PMID: 23388891]
  18. Nat Rev Mol Cell Biol. 2004 Dec;5(12):1024-37 [PMID: 15573139]
  19. Phys Rev Lett. 2017 Apr 14;118(15):158004 [PMID: 28452499]
  20. J Physiol Paris. 2004 Jul-Nov;98(4-6):315-30 [PMID: 16310350]
  21. Opt Express. 2012 Jan 30;20(3):3241-9 [PMID: 22330562]
  22. Sci Rep. 2012;2:514 [PMID: 22816038]
  23. Sci Robot. 2021 Mar 24;6(52): [PMID: 34043550]
  24. Chaos. 2019 Feb;29(2):023118 [PMID: 30823707]
  25. Science. 2019 Apr 5;364(6435):70-74 [PMID: 30948548]
  26. Rep Prog Phys. 2014;77(2):026601 [PMID: 24444693]
  27. Nat Commun. 2020 May 21;11(1):2547 [PMID: 32439919]
  28. PLoS One. 2017 Jun 2;12(6):e0178663 [PMID: 28575018]
  29. Annu Rev Neurosci. 1987;10:41-65 [PMID: 3551761]
  30. Science. 2004 Apr 2;304(5667):78-80 [PMID: 15064413]
  31. Chaos. 2021 Mar;31(3):033121 [PMID: 33810760]
  32. Eur Phys J E Soft Matter. 2017 Dec 14;40(12):110 [PMID: 29234967]
  33. Chaos. 2020 Jan;30(1):013102 [PMID: 32013466]
  34. Sci Rep. 2014 Jan 10;4:3629 [PMID: 24406849]
  35. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1391-6 [PMID: 20080704]

Word Cloud

Created with Highcharts 10.0.0reservoiractivecomputingphysicalsyntheticprocessinginformationsystemspassivedynamicalunitsresponseresultsdelayednoiseindispensablepropertylivingrealizednetworksprocessesenormouscomplexityinspiredmanyvariantsmodernmachinelearningonestimulatingnetworknodesfadingmemoryenablescomputationscomplexpredictionsReservoirsimplementedcomputerhardwarealsounconventionalsubstratesmechanicaloscillatorsspinsbacteriaoftensummarizeddemonstratemicroparticlesystemself-organizescomponentinherentlynoisynonlinearself-organizationunitpropulsionmicroswimmertargetself-couplingviacanperformpredictivetasksdespitestrongresultingBrownianmotionmicroswimmersachieveefficientsuppressionintroducespecialarchitectureuseshistoricalstatesoutputpavewaystudyself-organizedparticleHarnessingparticles

Similar Articles

Cited By (1)