Dynamic changes in the migratory microbial components of colon tissue during different periods of sepsis in an LPS-induced rat model.

Hao Xu, Jia You, Wenqin He, Lingpeng Pei, Yue Han, Xueer Wang, Zhigang Tian, Xiwei Zheng, Enqi Wu, Yaqin Ling
Author Information
  1. Hao Xu: School of Pharmacy, Minzu University of China, Beijing, China.
  2. Jia You: Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China.
  3. Wenqin He: School of Pharmacy, Minzu University of China, Beijing, China.
  4. Lingpeng Pei: School of Pharmacy, Minzu University of China, Beijing, China.
  5. Yue Han: School of Pharmacy, Minzu University of China, Beijing, China.
  6. Xueer Wang: School of Pharmacy, Minzu University of China, Beijing, China.
  7. Zhigang Tian: Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
  8. Xiwei Zheng: Department of Respiratory and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China.
  9. Enqi Wu: School of Pharmacy, Minzu University of China, Beijing, China.
  10. Yaqin Ling: School of Pharmacy, Minzu University of China, Beijing, China.

Abstract

Previous studies have shown that bacterial translocation may play an important role in worsening gastrointestinal injury during sepsis. However, the dynamics of specific microbiota components in intestinal tissues at different sepsis stages remain unclear. Rats receiving intraperitoneal lipopolysaccharide (LPS) were sacrificed at 12 h and 48 h post-injection. Routine blood, serum cytokines, and microbiota in colon tissue, colonic contents, and lung tissue at different time points were assessed. Migratory microbial components in colonic tissue at 12 h and 48 h post-LPS were identified using source tracking, characteristic component identification, and abundance difference analyses. Colonic tissue microbiota changed dynamically over time after LPS injection, involving translocation of microbial components from colon contents and lung tissue at different time points. Bacteria migrating to colon tissue at 12 h sepsis were mainly from colonic contents, while those at 48 h were predominantly from the lung tissue. The migratory microbial components in colon tissue were widely associated with blood indicators and colonizing genus abundance and microbiota functionality in colon tissue. In this study, the temporal dynamics of bacterial translocation from various sources into colon tissues at different sepsis progression stages were characterized for the first time, and the species composition of these migrating microbes was delineated. These bacterial migrants may contribute to the pathophysiological processes in sepsis through direct interactions or indirectly by modulating colonic microbiota community structure and function.

Keywords

References

  1. Nat Microbiol. 2016 Jul 18;1(10):16113 [PMID: 27670109]
  2. Front Immunol. 2019 Apr 30;10:891 [PMID: 31114571]
  3. Front Immunol. 2012 Apr 18;3:79 [PMID: 22566960]
  4. Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16731-6 [PMID: 18936492]
  5. J Infect Dis. 1995 Jan;171(1):229-32 [PMID: 7798670]
  6. Microorganisms. 2023 Mar 14;11(3): [PMID: 36985319]
  7. Nutrients. 2017 Jun 29;9(7): [PMID: 28661454]
  8. Crit Care Res Pract. 2016;2016:4370834 [PMID: 26966574]
  9. Am J Emerg Med. 2013 Mar;31(3):545-8 [PMID: 23380094]
  10. Crit Care. 2020 Jun 1;24(1):278 [PMID: 32487252]
  11. Adv Exp Med Biol. 2013;765:211-216 [PMID: 22879035]
  12. Front Nutr. 2021 Jul 29;8:714604 [PMID: 34395502]
  13. Bioinformatics. 2015 Sep 1;31(17):2882-4 [PMID: 25957349]
  14. Best Pract Res Clin Gastroenterol. 2003 Jun;17(3):397-425 [PMID: 12763504]
  15. Surgery. 2002 Mar;131(3):241-4 [PMID: 11894026]
  16. Front Microbiol. 2019 Oct 01;10:2259 [PMID: 31632373]
  17. Inflamm Bowel Dis. 2009 Aug;15(8):1183-9 [PMID: 19235886]
  18. Crit Care Med. 2017 May;45(5):e516-e523 [PMID: 28252538]
  19. PLoS One. 2014 Jan 24;9(1):e86117 [PMID: 24475077]
  20. JAMA. 2016 Feb 23;315(8):801-10 [PMID: 26903338]
  21. Curr Opin Microbiol. 2013 Jun;16(3):255-61 [PMID: 23831042]
  22. Clin Biochem. 2020 Mar;77:1-6 [PMID: 31935355]
  23. Am J Physiol Regul Integr Comp Physiol. 2001 Sep;281(3):R1013-23 [PMID: 11507020]
  24. Int J Syst Evol Microbiol. 2021 Jan;71(1): [PMID: 33226935]
  25. Mol Med Rep. 2013 Jun;7(6):1889-95 [PMID: 23625030]
  26. Best Pract Res Clin Gastroenterol. 2017 Dec;31(6):643-648 [PMID: 29566907]
  27. Nat Rev Nephrol. 2018 Jul;14(7):417-427 [PMID: 29691495]
  28. Am J Respir Cell Mol Biol. 2009 Jun;40(6):701-9 [PMID: 18988922]
  29. Cell Mol Life Sci. 2006 Jul;63(13):1523-37 [PMID: 16699811]
  30. Front Microbiol. 2021 Jun 22;12:569119 [PMID: 34239502]
  31. Crit Care. 2015 Jan 28;19:26 [PMID: 25887223]
  32. Front Immunol. 2019 Jul 26;10:1758 [PMID: 31402916]
  33. Nat Methods. 2019 Jul;16(7):627-632 [PMID: 31182859]
  34. Crit Care Med. 2020 Mar;48(3):276-288 [PMID: 32058366]
  35. Am J Respir Crit Care Med. 2010 Aug 15;182(4):517-25 [PMID: 20413631]
  36. Mol Biol (Mosk). 2019 Sep-Oct;53(5):799-814 [PMID: 31661479]
  37. Gut. 1998 Jan;42(1):29-35 [PMID: 9505882]
  38. Br Med Bull. 2004 Dec 13;71:1-11 [PMID: 15596865]
  39. Surgeon. 2012 Dec;10(6):350-6 [PMID: 22534256]
  40. Curr Opin Crit Care. 2003 Apr;9(2):143-51 [PMID: 12657978]
  41. Cureus. 2021 Feb 3;13(2):e13103 [PMID: 33643749]
  42. PLoS One. 2018 Dec 11;13(12):e0208715 [PMID: 30533065]
  43. J Anesth. 2007;21(2):232-42 [PMID: 17458653]
  44. Int J Syst Evol Microbiol. 2017 May;67(5):1255-1259 [PMID: 28100296]
  45. Nat Rev Mol Cell Biol. 2016 Sep;17(9):564-80 [PMID: 27353478]
  46. PLoS One. 2014 Oct 21;9(10):e111228 [PMID: 25333938]
  47. Am J Respir Cell Mol Biol. 2013 Oct;49(4):552-62 [PMID: 23656573]
  48. J Crit Care. 2022 Oct;71:154069 [PMID: 35667275]
  49. Sci Rep. 2020 Mar 26;10(1):5544 [PMID: 32218475]
  50. J Perianesth Nurs. 2003 Apr;18(2):96-114; quiz 115-7 [PMID: 12710004]
  51. N Engl J Med. 2015 Apr 23;372(17):1629-38 [PMID: 25776936]
  52. Crit Care. 2023 Mar 4;27(1):84 [PMID: 36870989]
  53. Shock. 2016 Mar;45(3):259-70 [PMID: 26871664]
  54. Oxid Med Cell Longev. 2016;2016:5806057 [PMID: 27413421]
  55. J Immunol. 2011 Nov 15;187(10):5255-67 [PMID: 21967897]
  56. Biomed Pharmacother. 2019 Oct;118:109363 [PMID: 31545277]
  57. J Inflamm Res. 2022 Feb 28;15:1457-1470 [PMID: 35250294]
  58. Infection. 2018 Dec;46(6):751-760 [PMID: 30003491]
  59. Crit Care. 2013 Apr 16;17(2):R70 [PMID: 23587132]
  60. Am J Respir Cell Mol Biol. 2021 Jan;64(1):19-28 [PMID: 32877613]
  61. J Leukoc Biol. 2007 Jan;81(1):1-5 [PMID: 17032697]
  62. World J Gastroenterol. 2021 May 21;27(19):2376-2393 [PMID: 34040329]
  63. Am J Physiol Gastrointest Liver Physiol. 2017 Mar 1;312(3):G171-G193 [PMID: 27908847]
  64. Am J Emerg Med. 2018 Jun;36(6):949-953 [PMID: 29133071]
  65. PLoS One. 2012;7(3):e34233 [PMID: 22457829]
  66. PLoS One. 2015 Mar 05;10(3):e0119437 [PMID: 25742300]
  67. Shock. 2020 Sep;54(3):330-336 [PMID: 31626040]
  68. Immun Inflamm Dis. 2021 Dec;9(4):1343-1357 [PMID: 34288545]
  69. Shock. 2016 Jul;46(1):52-9 [PMID: 27299587]
  70. J Infect Dis. 2000 Jan;181(1):176-80 [PMID: 10608764]
  71. J Clin Diagn Res. 2016 May;10(5):DC13-7 [PMID: 27437213]
  72. Infect Dis Rep. 2012 Apr 27;4(2):e31 [PMID: 24470945]
  73. Curr Microbiol. 2016 Jun;72(6):738-43 [PMID: 26897127]

MeSH Term

Rats
Animals
Lipopolysaccharides
Sepsis
Intestines
Microbiota
Colon

Chemicals

Lipopolysaccharides

Word Cloud

Created with Highcharts 10.0.0tissuecolonsepsismicrobiotahcomponentsdifferentmicrobialtranslocationcolonictimebacterialLPS1248contentslungmaydynamicstissuesstagesbloodpointsabundancemigratingmigratoryPreviousstudiesshownplayimportantroleworseninggastrointestinalinjuryHoweverspecificintestinalremainunclearRatsreceivingintraperitoneallipopolysaccharidesacrificedpost-injectionRoutineserumcytokinesassessedMigratorypost-LPSidentifiedusingsourcetrackingcharacteristiccomponentidentificationdifferenceanalysesColonicchangeddynamicallyinjectioninvolvingBacteriamainlypredominantlywidelyassociatedindicatorscolonizinggenusfunctionalitystudytemporalvarioussourcesprogressioncharacterizedfirstspeciescompositionmicrobesdelineatedmigrantscontributepathophysiologicalprocessesdirectinteractionsindirectlymodulatingcommunitystructurefunctionDynamicchangesperiodsLPS-inducedratmodel

Similar Articles

Cited By