Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products.

Patil Amruta Adhikrao, Gudle Mayuri Motiram, Gautam Kumar
Author Information
  1. Patil Amruta Adhikrao: Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
  2. Gudle Mayuri Motiram: Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
  3. Gautam Kumar: Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India. ORCID

Abstract

Nontuberculous Mycobacteria (NTM) refer to bacteria other than all species that do not cause tuberculosis or leprosy, excluding the species of the complex, . NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.

Keywords

References

  1. Swain A.; Gnanasekar P.; Prava J.; Rajeev A.C.; Kesarwani P.; Lahiri C.; Pan A.; A comparative genomics approach for shortlisting broad-spectrum drug targets in nontuberculous mycobacteria. Microb Drug Resist 2021,27(2),212-226 [DOI: 10.1089/mdr.2020.0161]
  2. Falkinham J.O.; Current epidemiologic trends of the nontuberculous mycobacteria (NTM). Curr Environ Health Rep 2016,3(2),161-167 [DOI: 10.1007/s40572-016-0086-z]
  3. Fedrizzi T.; Meehan C.J.; Grottola A.; Giacobazzi E.; Fregni Serpini G.; Tagliazucchi S.; Fabio A.; Bettua C.; Bertorelli R.; De Sanctis V.; Rumpianesi F.; Pecorari M.; Jousson O.; Tortoli E.; Segata N.; Genomic characterization of nontuberculous mycobacteria. Sci Rep 2017,7(1),45258 [DOI: 10.1038/srep45258]
  4. Falkinham J.O.; Ecology of nontuberculous mycobacteria. Microorganisms 2021,9(11),2262 [DOI: 10.3390/microorganisms9112262]
  5. Johansen M.D.; Herrmann J.L.; Kremer L.; Non-tuberculous mycobacteria and the rise of mycobacterium abscessus. Nat Rev Microbiol 2020,18(7),392-407 [DOI: 10.1038/s41579-020-0331-1]
  6. Koh W.J.; Nontuberculous mycobacteria-overview. Microbiol Spectr 2017,5(1),5.1.11 [DOI: 10.1128/microbiolspec.TNMI7-0024-2016]
  7. Sethiya J.P.; Sowards M.A.; Jackson M.; North E.J.; MmpL3 inhibition: A new approach to treat nontuberculous mycobacterial infections. Int J Mol Sci 2020,21(17),6202 [DOI: 10.3390/ijms21176202]
  8. Huang H.L.; Lu P.L.; Lee C.H.; Chong I.W.; Treatment of pulmonary disease caused by mycobacterium kansasii. J Formos Med Assoc 2020,119(Suppl. 1),S51-S57 [DOI: 10.1016/j.jfma.2020.05.018]
  9. Mogami R.; Goldenberg T.; Marca P.G.C.; Mello F.C.Q.; Lopes A.J.; Pulmonary infection caused by mycobacterium kansasii: Findings on computed tomography of the chest. Radiol Bras 2016,49(4),209-213 [DOI: 10.1590/0100-3984.2015.0078]
  10. Coolen-Allou N.; Touron T.; Belmonte O.; Gazaille V.; Andre M.; Allyn J.; Picot S.; Payet A.; Veziris N.; Clinical, radiological, and microbiological characteristics of mycobacterium simiae infection in 97 patients. Antimicrob Agents Chemother 2018,62(7),e00395-e18 [DOI: 10.1128/AAC.00395-18]
  11. Sette C.S.; Wachholz P.A.; Masuda P.Y.; da Costa Figueira R.B.F.; de Oliveira Mattar F.R.; Ura D.G.; mycobacterium marinum infection: A case report. J Venom Anim Toxins Incl Trop Dis 2015,21(1),7 [DOI: 10.1186/s40409-015-0008-9]
  12. Johnson M.G.; Stout J.E.; Twenty-eight cases of mycobacterium marinum infection: Retrospective case series and literature review. Infection 2015,43(6),655-662 [DOI: 10.1007/s15010-015-0776-8]
  13. Chen Y.; Jiang J.; Jiang H.; Chen J.; Wang X.; Liu W.; Chen Z.; Shi Y.; Zhang W.; Wang H.; mycobacterium gordonae in patient with facial ulcers, nosebleeds, and positive T-SPOT. TB test, China. Emerg Infect Dis 2017,23(7),1204-1206 [DOI: 10.3201/eid2307.162033]
  14. Utsugi H.; Usui Y.; Nishihara F.; Kanazawa M.; Nagata M.; mycobacterium gordonae-induced humidifier lung. BMC Pulm Med 2015,15(1),108 [DOI: 10.1186/s12890-015-0107-y]
  15. Lotfi H.; Sankian M.; Meshkat Z.; Khalifeh Soltani A.; Aryan E.; mycobacterium szulgai pulmonary infection in a vitamin D���deficient patient: A case report. Clin Case Rep 2021,9(3),1146-1149 [DOI: 10.1002/ccr3.3692]
  16. Wilson J.W.; Jagtiani A.C.; Wengenack N.L.; mycobacterium scrofulaceum disease: Experience from a tertiary medical centre and review of the literature. Infect Dis 2019,51(8),602-609 [DOI: 10.1080/23744235.2019.1634281]
  17. Busatto C.; Vianna J.S.; da Silva L.V.; Ramis I.B.; da Silva P.E.A.; mycobacterium avium: An overview. Tuberculosis 2019,114,127-134 [DOI: 10.1016/j.tube.2018.12.004]
  18. Gutierrez C.; Somoskovi A.; Human pathogenic mycobacteria. Reference Module in Biomedical Sciences 2014,1-15 [DOI: 10.1016/B978-0-12-801238-3.00137-9]
  19. Duran M.; Araiza A.; Surani S.R.; Vakil A.; Varon J.; Pulmonary infection caused by mycobacterium terrae: A case report and literature review. Cureus 2019,11(11),e6228 [DOI: 10.7759/cureus.6228]
  20. Lee M.R.; Sheng W.H.; Hung C.C.; Yu C.J.; Lee L.N.; Hsueh P.R.; mycobacterium abscessus complex infections in humans. Emerg Infect Dis 2015,21(9),1638-1646 [DOI: 10.3201/2109.141634]
  21. Little J.S.; Dedrick R.M.; Freeman K.G.; Cristinziano M.; Smith B.E.; Benson C.A.; Jhaveri T.A.; Baden L.R.; Solomon D.A.; Hatfull G.F.; Bacteriophage treatment of disseminated cutaneous mycobacterium chelonae infection. Nat Commun 2022,13(1),2313 [DOI: 10.1038/s41467-022-29689-4]
  22. Pinto-Gouveia M.; Gameiro A.; Ramos L.; Cardoso J.C.; Brites M.M.; Tellechea ��.; Figueiredo A.; mycobacterium chelonae is an ubiquitous atypical mycobacterium. Case Rep Dermatol 2015,7(2),207-211 [DOI: 10.1159/000438898]
  23. Saffo Z.; Ognjan A.; mycobacterium smegmatis infection of a prosthetic total knee arthroplasty. IDCases 2016,5,80-82 [DOI: 10.1016/j.idcr.2016.07.007]
  24. Okamori S.; Asakura T.; Nishimura T.; Tamizu E.; Ishii M.; Yoshida M.; Fukano H.; Hayashi Y.; Fujita M.; Hoshino Y.; Betsuyaku T.; Hasegawa N.; Natural history of mycobacterium fortuitum pulmonary infection presenting with migratory infiltrates: A case report with microbiological analysis. BMC Infect Dis 2018,18(1),1-6 [DOI: 10.1186/s12879-017-2892-9]
  25. Gopalaswamy R.; Shanmugam S.; Mondal R.; Subbian S.; Of tuberculosis and non-tuberculous mycobacterial infections ��� A comparative analysis of epidemiology, diagnosis and treatment. J Biomed Sci 2020,27(1),74 [DOI: 10.1186/s12929-020-00667-6]
  26. van Ingen J.; Diagnosis of nontuberculous mycobacterial infections. Semin Respir Crit Care Med 2013,34(1),103-109 [DOI: 10.1055/s-0033-1333569]
  27. Tarashi S.; Siadat S.D.; Fateh A.; Nontuberculous mycobacterial resistance to antibiotics and disinfectants: Challenges still ahead. BioMed Res Int 2022,2022,1-12 [DOI: 10.1155/2022/8168750]
  28. Hoffner S.; Chan M.M.; Chan E.D.; Ordway D.; Drug discovery targeting drug-resistant nontuberculous mycobacteria. Drug Discovery Targeting Drug-Resistant Bacteria 2020,361-376 [DOI: 10.1016/B978-0-12-818480-6.00012-6]
  29. Saxena S.; Spaink H.P.; Forn-Cun�� G.; Drug resistance in nontuberculous mycobacteria: Mechanisms and models. Biology 2021,10(2),96 [DOI: 10.3390/biology10020096]
  30. van Ingen J.; Drug susceptibility testing of nontuberculous mycobacteria. Nontuberculous Mycobacterial Disease 2019,61-88 [DOI: 10.1007/978-3-319-93473-0_3]
  31. Wu M.L.; Aziz D.B.; Dartois V.; Dick T.; NTM drug discovery: Status, gaps and the way forward. Drug Discov Today 2018,23(8),1502-1519 [DOI: 10.1016/j.drudis.2018.04.001]
  32. Luthra S.; Rominski A.; Sander P.; The role of antibiotic-target-modifying and antibiotic-modifying enzymes in mycobacterium abscessus drug resistance. Front Microbiol 2018,9,2179 [DOI: 10.3389/fmicb.2018.02179]
  33. Rominski A.; Roditscheff A.; Selchow P.; B��ttger E.C.; Sander P.; Intrinsic rifamycin resistance of mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591. J Antimicrob Chemother 2017,72(2),376-384 [DOI: 10.1093/jac/dkw466]
  34. Griffith D.E.; Daley C.L.; Treatment of mycobacterium abscessus pulmonary disease. Chest 2022,161(1),64-75 [DOI: 10.1016/j.chest.2021.07.035]
  35. Huh H.J.; Kim S.Y.; Jhun B.W.; Shin S.J.; Koh W.J.; Recent advances in molecular diagnostics and understanding mechanisms of drug resistance in nontuberculous mycobacterial diseases. Infect Genet Evol 2019,72,169-182 [DOI: 10.1016/j.meegid.2018.10.003]
  36. van Ingen J.; Treatment of pulmonary disease caused by non-tuberculous mycobacteria. Lancet Respir Med 2015,3(3),179-180 [DOI: 10.1016/S2213-2600(15)00033-8]
  37. Jang S.; Multidrug efflux pumps in staphylococcus aureus and their clinical implications. J Microbiol 2016,54(1),1-8 [DOI: 10.1007/s12275-016-5159-z]
  38. Andersen J.; He G.X.; Kakarla P.; Kc R.; Kumar S.; Lakra W.; Mukherjee M.; Ranaweera I.; Shrestha U.; Tran T.; Varela M.; Multidrug efflux pumps from enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Int J Environ Res Public Health 2015,12(2),1487-1547 [DOI: 10.3390/ijerph120201487]
  39. Chandra H.; Bishnoi P.; Yadav A.; Patni B.; Mishra A.; Nautiyal A.; Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials���a review. Plants 2017,6(4),16 [DOI: 10.3390/plants6020016]
  40. Duan W.; Li X.; Ge Y.; Yu Z.; Li P.; Li J.; Qin L.; Xie J.; mycobacterium tuberculosis Rv1473 is a novel macrolides ABC efflux pump regulated by WhiB7. Future Microbiol 2019,14(1),47-59 [DOI: 10.2217/fmb-2018-0207]
  41. Zheng W.; Thorne N.; McKew J.C.; Phenotypic screens as a renewed approach for drug discovery. Drug Discov Today 2013,18(21-22),1067-1073 [DOI: 10.1016/j.drudis.2013.07.001]
  42. Farha M.A.; Brown E.D.; Drug repurposing for antimicrobial discovery. Nat Microbiol 2019,4(4),565-577 [DOI: 10.1038/s41564-019-0357-1]
  43. Kaul G.; Shukla M.; Dasgupta A.; Chopra S.; Update on drug-repurposing: Is it useful for tackling antimicrobial resistance? Future Microbiol 2019,14(10),829-831 [DOI: 10.2217/fmb-2019-0122]
  44. Kaushik I.; Ramachandran S.; Prasad S.; Srivastava S.K.; Drug rechanneling: A novel paradigm for cancer treatment. Semin Cancer Biol 2021,68,279-290 [DOI: 10.1016/j.semcancer.2020.03.011]
  45. Dini�� J.; Efferth T.; Garc��a-Sosa A.T.; Grahovac J.; Padr��n J.M.; Pajeva I.; Rizzolio F.; Saponara S.; Spengler G.; Tsakovska I.; Repurposing old drugs to fight multidrug resistant cancers. Drug Resist Updat 2020,52,100713 [DOI: 10.1016/j.drup.2020.100713]
  46. Soni I.; De Groote M.A.; Dasgupta A.; Chopra S.; Challenges facing the drug discovery pipeline for non-tuberculous mycobacteria. J Med Microbiol 2016,65(1),1-8 [DOI: 10.1099/jmm.0.000198]
  47. Kumar N.; Sharma S.; Kaushal P.S.; Protein synthesis in mycobacterium tuberculosis as a potential target for therapeutic interventions. Mol Aspects Med 2021,81,101002 [DOI: 10.1016/j.mam.2021.101002]
  48. Coolen N.; Morand P.; Martin C.; Hubert D.; Kanaan R.; Chapron J.; Honor�� I.; Dusser D.; Audureau E.; Veziris N.; Burgel P.R.; Reduced risk of nontuberculous mycobacteria in cystic fibrosis adults receiving long-term azithromycin. J Cyst Fibros 2015,14(5),594-599 [DOI: 10.1016/j.jcf.2015.02.006]
  49. Moon S.M.; Choe J.; Jhun B.W.; Jeon K.; Kwon O.J.; Huh H.J.; Lee N.Y.; Daley C.L.; Koh W.J.; Treatment with a macrolide-containing regimen for mycobacterium kansasii pulmonary disease. Respir Med 2019,148,37-42 [DOI: 10.1016/j.rmed.2019.01.012]
  50. Palencia A.; Li X.; Bu W.; Choi W.; Ding C.Z.; Easom E.E.; Feng L.; Hernandez V.; Houston P.; Liu L.; Meewan M.; Mohan M.; Rock F.L.; Sexton H.; Zhang S.; Zhou Y.; Wan B.; Wang Y.; Franzblau S.G.; Woolhiser L.; Gruppo V.; Lenaerts A.J.; O���Malley T.; Parish T.; Cooper C.B.; Waters M.G.; Ma Z.; Ioerger T.R.; Sacchettini J.C.; Rullas J.; Angulo-Barturen I.; P��rez-Herr��n E.; Mendoza A.; Barros D.; Cusack S.; Plattner J.J.; Alley M.R.K.; Discovery of novel oral protein synthesis inhibitors of mycobacterium tuberculosis that target Leucyl-tRNA synthetase. Antimicrob Agents Chemother 2016,60(10),6271-6280 [DOI: 10.1128/AAC.01339-16]
  51. Raaijmakers J.; Schildkraut J.A.; Hoefsloot W.; van Ingen J.; The role of amikacin in the treatment of nontuberculous mycobacterial disease. Expert Opin Pharmacother 2021,22(15),1961-1974 [DOI: 10.1080/14656566.2021.1953472]
  52. Kim O.H.; Kwon B.S.; Han M.; Koh Y.; Kim W.S.; Song J.W.; Oh Y.M.; Lee S.D.; Lee S.W.; Lee J.S.; Lim C.M.; Choi C.M.; Huh J.W.; Hong S.B.; Shim T.S.; Jo K.W.; Association between duration of aminoglycoside treatment and outcome of cavitary mycobacterium avium complex lung disease. Clin Infect Dis 2019,68(11),1870-1876 [DOI: 10.1093/cid/ciy804]
  53. Shirley M.; Amikacin liposome inhalation suspension: A review in mycobacterium avium complex lung disease. Drugs 2019,79(5),555-562 [DOI: 10.1007/s40265-019-01095-z]
  54. Yip P.C.W.; Kam K.M.; Lam E.T.K.; Chan R.C.Y.; Yew W.W.; In vitro activities of PNU-100480 and linezolid against drug-susceptible and drug-resistant mycobacterium tuberculosis isolates. Int J Antimicrob Agents 2013,42(1),96-97 [DOI: 10.1016/j.ijantimicag.2013.03.002]
  55. Kim T.S.; Choe J.H.; Kim Y.J.; Yang C.S.; Kwon H.J.; Jeong J.; Kim G.; Park D.E.; Jo E.K.; Cho Y.L.; Jang J.; Activity of LCB01-0371, a Novel Oxazolidinone, against mycobacterium abscessus. Antimicrob Agents Chemother 2017,61(9),e02752-e16 [DOI: 10.1128/AAC.02752-16]
  56. Brown-Elliott B.A.; Wallace R.J.; Rubio A.; Wallace R.J.; In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol 2017,55(6),1747-1754 [DOI: 10.1128/JCM.00274-17]
  57. Ruth M.M.; Koeken V.A.C.M.; Pennings L.J.; Svensson E.M.; Wertheim H.F.L.; Hoefsloot W.; van Ingen J.; Is there a role for tedizolid in the treatment of non-tuberculous mycobacterial disease? J Antimicrob Chemother 2020,75(3),609-617 [DOI: 10.1093/jac/dkz511]
  58. Shaw T.D.; Smyth M.; Turner G.; Hunter M.; Prolonged tedizolid use in cutaneous non-tuberculous mycobacterial infection. J Clin Tuberc Other Mycobact Dis 2021,24,100261 [DOI: 10.1016/j.jctube.2021.100261]
  59. Le Run E.; Arthur M.; Mainardi J.L.; In vitro and intracellular activity of imipenem combined with tedizolid, rifabutin, and avibactam against mycobacterium abscessus. Antimicrob Agents Chemother 2019,63(4),e01915-e01918 [DOI: 10.1128/AAC.01915-18]
  60. Guo Q.; Xu L.; Tan F.; Zhang Y.; Fan J.; Wang X.; Zhang Z.; Li B.; Chu H.; A novel oxazolidinone, contezolid (MRX-I), expresses anti-mycobacterium abscessus activity in vitro. Antimicrob Agents Chemother 2021,65(11),e00889-e21 [DOI: 10.1128/AAC.00889-21]
  61. Kaushik A.; Ammerman N.C.; Martins O.; Parrish N.M.; Nuermberger E.L.; In vitro activity of new tetracycline analogs omadacycline and eravacycline against drug-resistant clinical isolates of mycobacterium abscessus. Antimicrob Agents Chemother 2019,63(6),e00470-e19 [DOI: 10.1128/AAC.00470-19]
  62. Bax H.I.; de Vogel C.P.; Mouton J.W.; de Steenwinkel J.E.M.; Omadacycline as a promising new agent for the treatment of infections with mycobacterium abscessus. J Antimicrob Chemother 2019,74(10),2930-2933 [DOI: 10.1093/jac/dkz267]
  63. Brown-Elliott B.A.; Wallace R.J.; In vitro susceptibility testing of eravacycline against nontuberculous mycobacteria. Antimicrob Agents Chemother 2022,66(9),e00689-e22 [DOI: 10.1128/aac.00689-22]
  64. Nicklas D.A.; Maggioncalda E.C.; Story-Roller E.; Eichelman B.; Tabor C.; Serio A.W.; Keepers T.R.; Chitra S.; Lamichhane G.; Potency of omadacycline against mycobacteroides abscessus clinical isolates in vitro and in a mouse model of pulmonary infection. Antimicrob Agents Chemother 2022,66(1),e01704-e01721 [DOI: 10.1128/AAC.01704-21]
  65. Reiche M.A.; Warner D.F.; Mizrahi V.; Targeting DNA replication and repair for the development of novel therapeutics against tuberculosis. Front Mol Biosci 2017,4,75 [DOI: 10.3389/fmolb.2017.00075]
  66. Stokes S.S.; Vemula R.; Pucci M.J.; Advancement of GyrB inhibitors for treatment of infections caused by mycobacterium tuberculosis and non-tuberculous mycobacteria. ACS Infect Dis 2020,6(6),1323-1331 [DOI: 10.1021/acsinfecdis.0c00025]
  67. Piton J.; Petrella S.; Delarue M.; Andr��-Leroux G.; Jarlier V.; Aubry A.; Mayer C.; Structural insights into the quinolone resistance mechanism of mycobacterium tuberculosis DNA gyrase. PLoS One 2010,5(8),e12245 [DOI: 10.1371/journal.pone.0012245]
  68. Locher C.P.; Jones S.M.; Hanzelka B.L.; Perola E.; Shoen C.M.; Cynamon M.H.; Ngwane A.H.; Wiid I.J.; van Helden P.D.; Betoudji F.; Nuermberger E.L.; Thomson J.A.; A novel inhibitor of gyrase B is a potent drug candidate for treatment of tuberculosis and nontuberculosis mycobacterial infections. Antimicrob Agents Chemother 2015,59(3),1455-1465 [DOI: 10.1128/AAC.04347-14]
  69. Kumar G.; Sathe A.; Krishna V.S.; Sriram D.; Jachak S.M.; Synthesis and biological evaluation of dihydroquinoline carboxamide derivatives as anti-tubercular agents. Eur J Med Chem 2018,157,1-13 [DOI: 10.1016/j.ejmech.2018.07.046]
  70. Gold B.; Nathan C.; Targeting phenotypically tolerant mycobacterium tuberculosis. Tuberculosis and the Tubercle Bacillus 2017,317-360 [DOI: 10.1128/9781555819569.ch15]
  71. Alffenaar J.W.; M��rtson A.G.; Heysell S.K.; Cho J.G.; Patanwala A.; Burch G.; Kim H.Y.; Sturkenboom M.G.G.; Byrne A.; Marriott D.; Sandaradura I.; Tiberi S.; Sintchencko V.; Srivastava S.; Peloquin C.A.; Therapeutic drug monitoring in non-tuberculosis mycobacteria infections. Clin Pharmacokinet 2021,60(6),711-725 [DOI: 10.1007/s40262-021-01000-6]
  72. Mu��oz-Egea M.C.; Carrasco-Ant��n N.; Esteban J.; State-of-the-art treatment strategies for nontuberculous mycobacteria infections. Expert Opin Pharmacother 2020,21(8),969-981 [DOI: 10.1080/14656566.2020.1740205]
  73. Brown-Elliott B.A.; Rubio A.; Wallace R.J.; In vitro susceptibility testing of a novel benzimidazole, SPR719, against nontuberculous mycobacteria. Antimicrob Agents Chemother 2018,62(11),e01503-e01518 [DOI: 10.1128/AAC.01503-18]
  74. Durcik M.; Toma��i�� T.; Zidar N.; Zega A.; Kikelj D.; Ma��i�� L.P.; Ila�� J.; ATP-competitive DNA gyrase and topoisomerase IV inhibitors as antibacterial agents. Expert Opin Ther Pat 2019,29(3),171-180 [DOI: 10.1080/13543776.2019.1575362]
  75. Talley A.K.; Thurston A.; Moore G.; Gupta V.K.; Satterfield M.; Manyak E.; Stokes S.; Dane A.; Melnick D.; First-in-human evaluation of the safety, tolerability, and pharmacokinetics of SPR720, a novel oral Bacterial DNA gyrase (GyrB) inhibitor for mycobacterial infections. Antimicrob Agents Chemother 2021,65(11),e01208-e01221 [DOI: 10.1128/AAC.01208-21]
  76. Stephanie F.; Tambunan U.S.F.; Siahaan T.J.M.; tuberculosis transcription machinery: A review on the mycobacterial rna polymerase and drug discovery efforts. Life 2022,12(11),1774 [DOI: 10.3390/life12111774]
  77. Lal U.R.; Singh A.; Recent developments in natural product-based drug discovery in tropical diseases. Stud Nat Prod Chem 2016,48,263-285 [DOI: 10.1016/B978-0-444-63602-7.00008-4]
  78. Igarashi M.; Ishizaki Y.; Takahashi Y.; New antituberculous drugs derived from natural products: Current perspectives and issues in antituberculous drug development. J Antibiot 2018,71(1),15-25 [DOI: 10.1038/ja.2017.126]
  79. Alfarisi O.; Alghamdi W.A.; Al-Shaer M.H.; Dooley K.E.; Peloquin C.A.; Rifampin vs. Rifapentine: What is the preferred rifamycin for tuberculosis? Expert Rev Clin Pharmacol 2017,10(10),1027-1036 [DOI: 10.1080/17512433.2017.1366311]
  80. Aziz D.B.; Low J.L.; Wu M.L.; Gengenbacher M.; Teo J.W.P.; Dartois V.; Dick T.; Rifabutin is active against mycobacterium abscessus complex. Antimicrob Agents Chemother 2017,61(6),e00155-e17 [DOI: 10.1128/AAC.00155-17]
  81. Kim D.H.; Kim S.Y.; Huh H.J.; Lee N.Y.; Koh W.J.; Jhun B.W.; In vitro activity of rifamycin derivatives against nontuberculous mycobacteria, including macrolide-/amikacin-resistant clinical isolates. Antimicrob Agents Chemother 2023,65(5),1-6 [PMID: 33685889]
  82. Haworth C.S.; Banks J.; Capstick T.; Fisher A.J.; Gorsuch T.; Laurenson I.F.; Leitch A.; Loebinger M.R.; Milburn H.J.; Nightingale M.; Ormerod P.; Shingadia D.; Smith D.; Whitehead N.; Wilson R.; Floto R.A.; British thoracic society guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ Open Respir Res 2017,4(1),e000242 [DOI: 10.1136/bmjresp-2017-000242]
  83. Le Run E.; Arthur M.; Mainardi J.L.; In vitro and intracellular activity of imipenem combined with rifabutin and avibactam against mycobacterium abscessus. Antimicrob Agents Chemother 2018,62(8),e00623-e18 [DOI: 10.1128/AAC.00623-18]
  84. Dick T.; Shin S.J.; Koh W.J.; Dartois V.; Gengenbacher M.; Rifabutin is active against mycobacterium abscessus in mice. Antimicrob Agents Chemother 2020,64(2),e01943-e19 [DOI: 10.1128/AAC.01943-19]
  85. Iqbal I.; Bajeli S.; Akela A.; Kumar A.; Bioenergetics of mycobacterium: An emerging landscape for drug discovery. Pathogens 2018,7(1),24 [DOI: 10.3390/pathogens7010024]
  86. Urban M.; ��lachtov�� V.; Brul��kov�� L.; Small organic molecules targeting the energy metabolism of mycobacterium tuberculosis. Eur J Med Chem 2021,212,113139 [DOI: 10.1016/j.ejmech.2020.113139]
  87. Roy K.K.; Wani M.A.; Emerging opportunities of exploiting mycobacterial electron transport chain pathway for drug-resistant tuberculosis drug discovery. Expert Opin Drug Discov 2020,15(2),231-241 [DOI: 10.1080/17460441.2020.1696771]
  88. Hasenoehrl E.J.; Wiggins T.J.; Berney M.; Bioenergetic inhibitors: Antibiotic efficacy and mechanisms of action in mycobacterium tuberculosis. Front Cell Infect Microbiol 2021,10,611683 [DOI: 10.3389/fcimb.2020.611683]
  89. Lee B.S.; Sviriaeva E.; Pethe K.; Targeting the cytochrome oxidases for drug development in mycobacteria. Prog Biophys Mol Biol 2020,152,45-54 [DOI: 10.1016/j.pbiomolbio.2020.02.001]
  90. O���Donnell M.R.; Padayatchi N.; Metcalfe J.Z.; Elucidating the role of clofazimine for the treatment of tuberculosis. Int J Tuberc Lung Dis 2016,20(12),52-57 [DOI: 10.5588/ijtld.16.0073]
  91. Dalcolmo M.; Gayoso R.; Sotgiu G.; D���Ambrosio L.; Rocha J.L.; Borga L.; Fandinho F.; Braga J.U.; Galesi V.M.N.; Barreira D.; Sanchez D.A.; Dockhorn F.; Centis R.; Caminero J.A.; Migliori G.B.; Effectiveness and safety of clofazimine in multidrug-resistant tuberculosis: A nationwide report from Brazil. Eur Respir J 2017,49(3),1602445 [DOI: 10.1183/13993003.02445-2016]
  92. Lechartier B.; Cole S.T.; Mode of action of clofazimine and combination therapy with benzothiazinones against mycobacterium tuberculosis. Antimicrob Agents Chemother 2015,59(8),4457-4463 [DOI: 10.1128/AAC.00395-15]
  93. Cholo M.C.; Mothiba M.T.; Fourie B.; Anderson R.; Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother 2017,72(2),338-353 [DOI: 10.1093/jac/dkw426]
  94. McGuffin S.A.; Pottinger P.S.; Harnisch J.P.; Clofazimine in nontuberculous mycobacterial infections: A growing niche. Open Forum Infect Dis 2017,4(3),ofx147 [DOI: 10.1093/ofid/ofx147]
  95. Luo J.; Yu X.; Jiang G.; Fu Y.; Huo F.; Ma Y.; Wang F.; Shang Y.; Liang Q.; Xue Y.; Huang H.; In vitro activity of clofazimine against nontuberculous mycobacteria isolated in beijing, China. Antimicrob Agents Chemother 2018,62(7),e00072-e18 [DOI: 10.1128/AAC.00072-18]
  96. Pfaeffle H.O.I.; Alameer R.M.; Marshall M.H.; Houpt E.R.; Albon D.P.; Heysell S.K.; Clofazimine for treatment of multidrug-resistant non-tuberculous mycobacteria. Pulm Pharmacol Ther 2021,70,102058 [DOI: 10.1016/j.pupt.2021.102058]
  97. Banaschewski B.; Verma D.; Pennings L.J.; Zimmerman M.; Ye Q.; Gadawa J.; Dartois V.; Ordway D.; van Ingen J.; Ufer S.; Stapleton K.; Hofmann T.; Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. J Cyst Fibros 2019,18(5),714-720 [DOI: 10.1016/j.jcf.2019.05.013]
  98. Kunkel M.; Doyle-Eisele M.; Kuehl P.; Rotermund K.; Hittinger M.; Ufer S.; Reed M.; Grant M.; Hofmann T.; Clofazimine inhalation suspension demonstrates promising toxicokinetics in canines for treating pulmonary nontuberculous mycobacteria infection. Antimicrob Agents Chemother 2023,67(2),e01144-e22 [DOI: 10.1128/aac.01144-22]
  99. Preiss L.; Langer J.D.; Yildiz ��.; Eckhardt-Strelau L.; Guillemont J.E.G.; Koul A.; Meier T.; Structure of the mycobacterial ATP synthase F o rotor ring in complex with the anti-TB drug bedaquiline. Sci Adv 2015,1(4),e1500106 [DOI: 10.1126/sciadv.1500106]
  100. Kundu S.; Biukovic G.; Gr��ber G.; Dick T.; Bedaquiline targets the �� subunit of mycobacterial F-ATP synthase. Antimicrob Agents Chemother 2016,60(11),6977-6979 [DOI: 10.1128/AAC.01291-16]
  101. Brown-Elliott B.A.; Wallace R.J.; In vitro susceptibility testing of bedaquiline against mycobacterium abscessus complex. Antimicrob Agents Chemother 2019,63(2),e01919-e18 [DOI: 10.1128/AAC.01919-18]
  102. Kim D.H.; Jhun B.W.; Moon S.M.; Kim S.Y.; Jeon K.; Kwon O.J.; Huh H.J.; Lee N.Y.; Shin S.J.; Daley C.L.; Koh W.J.; In vitro activity of bedaquiline and delamanid against nontuberculous mycobacteria, including macrolide-resistant clinical isolates. Antimicrob Agents Chemother 2019,63(8),e00665-e19 [DOI: 10.1128/AAC.00665-19]
  103. Ruth M.M.; Sangen J.J.N.; Remmers K.; Pennings L.J.; Svensson E.; Aarnoutse R.E.; Zweijpfenning S.M.H.; Hoefsloot W.; Kuipers S.; Magis-Escurra C.; Wertheim H.F.L.; van Ingen J.; A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria. J Antimicrob Chemother 2019,74(4),935-943 [DOI: 10.1093/jac/dky526]
  104. Le Moigne V.; Raynaud C.; Moreau F.; Dupont C.; Nigou J.; Neyrolles O.; Kremer L.; Herrmann J.L.; Efficacy of bedaquiline, alone or in combination with imipenem, against mycobacterium abscessus in C3HeB/FeJ mice. Antimicrob Agents Chemother 2020,64(6),e00114-e00120 [DOI: 10.1128/AAC.00114-20]
  105. Kumar G.; Engle K.; Natural products acting against S. Aureus through membrane and cell wall disruption. Nat Prod Rep 2023,40(10),1608-1646 [DOI: 10.1039/D2NP00084A]
  106. Kumar G.; C A.; Natural products and their analogues acting against mycobacterium tuberculosis: A recent update. Drug Dev Res 2023,84(5),779-804 [DOI: 10.1002/ddr.22063]
  107. Mu��oz-Mu��oz L.; A��nsa J.A.; Ram��n-Garc��a S.; Repurposing ��-lactams for the treatment of mycobacterium kansasii infections: An in vitro study. Antibiotics 2023,12(2),335 [DOI: 10.3390/antibiotics12020335]
  108. Lefebvre A.L.; Le Moigne V.; Bernut A.; Veckerl�� C.; Compain F.; Herrmann J.L.; Kremer L.; Arthur M.; Mainardi J.L.; Inhibition of the ��-lactamase bla mab by avibactam improves the in vitro and in vivo efficacy of imipenem against mycobacterium abscessus. Antimicrob Agents Chemother 2017,61(4),e02440-e16 [DOI: 10.1128/AAC.02440-16]
  109. Dub��e V.; Bernut A.; Cortes M.; Lesne T.; Dorchene D.; Lefebvre A.L.; Hugonnet J.E.; Gutmann L.; Mainardi J.L.; Herrmann J.L.; Gaillard J.L.; Kremer L.; Arthur M.; ��-Lactamase inhibition by avibactam in mycobacterium abscessus. J Antimicrob Chemother 2015,70(4),1051-1058 [DOI: 10.1093/jac/dku510]
  110. Negatu D.A.; Gonz��lez del R��o R.; Cacho-Izquierdo M.; Barros-Aguirre D.; Lelievre J.; Rullas J.; Casado P.; Ganapathy U.S.; Zimmerman M.D.; Gengenbacher M.; Dartois V.; Dick T.; Activity of oral tebipenem-avibactam in a mouse model of mycobacterium abscessus lung infection. Antimicrob Agents Chemother 2023,67(2),e01459-e22 [DOI: 10.1128/aac.01459-22]
  111. Le Run E.; Atze H.; Arthur M.; Mainardi J-L.; Impact of relebactam-mediated inhibition of mycobacterium abscessus BlaMab ��-lactamase on the in vitro and intracellular efficacy of imipenem. J Antimicrob Chemother 2020,75(2),379-383 [PMID: 31637424]
  112. Kaushik A.; Ammerman N.C.; Parrish N.M.; Nuermberger E.L.; New ��-lactamase inhibitors nacubactam and zidebactam improve the in vitro activity of ��-lactam antibiotics against mycobacterium abscessus complex clinical isolates. Antimicrob Agents Chemother 2019,63(9),e00733-e19 [DOI: 10.1128/AAC.00733-19]
  113. Kaushik A.; Ammerman N.C.; Lee J.; Martins O.; Kreiswirth B.N.; Lamichhane G.; Parrish N.M.; Nuermberger E.L.; In vitro activity of the new ��-lactamase inhibitors relebactam and vaborbactam in combination with ��-lactams against mycobacterium abscessus complex clinical isolates. Antimicrob Agents Chemother 2019,63(3),e02623-e18 [DOI: 10.1128/AAC.02623-18]
  114. Meir M.; Bifani P.; Barkan D.; The addition of avibactam renders piperacillin an effective treatment for mycobacterium abscessus infection in an in vivo model. Antimicrob Resist Infect Control 2018,7(1),151 [DOI: 10.1186/s13756-018-0448-4]
  115. Kaushik A.; Gupta C.; Fisher S.; Story-Roller E.; Galanis C.; Parrish N.; Lamichhane G.; Combinations of avibactam and carbapenems exhibit enhanced potencies against drug-resistant mycobacterium abscessus. Future Microbiol 2017,12(6),473-480 [DOI: 10.2217/fmb-2016-0234]
  116. Harrison J.; Weaver J.A.; Desai M.; Cox J.A.G.; In vitro efficacy of relebactam versus avibactam against mycobacterium abscessus complex. Cell Surf 2021,7,100064 [DOI: 10.1016/j.tcsw.2021.100064]
  117. Pandey R.; Chen L.; Manca C.; Jenkins S.; Glaser L.; Vinnard C.; Stone G.; Lee J.; Mathema B.; Nuermberger E.L.; Bonomo R.A.; Kreiswirth B.N.; Dual ��-lactam combinations highly active against mycobacterium abscessus complex in vitro. MBio 2019,10(1),e02895-e18 [DOI: 10.1128/mBio.02895-18]
  118. Rimal B.; Batchelder H.R.; Story-Roller E.; Panthi C.M.; Tabor C.; Nuermberger E.L.; Townsend C.A.; Lamichhane G.; T405, a new penem, exhibits in vivo efficacy against M. Abscessus and synergy with ��-lactams imipenem and cefditoren. Antimicrob Agents Chemother 2022,66(6),e00536-e22 [DOI: 10.1128/aac.00536-22]
  119. Zheng H.; Wang Y.; He W.; Li F.; Xia H.; Zhao B.; Wang S.; Shen C.; Zhao Y.; In vitro activity of pretomanid against nontuberculous mycobacteria. Antimicrob Agents Chemother 2022,66(1),e01810-e01821 [DOI: 10.1128/AAC.01810-21]
  120. Krieger D.; Sch��nfeld N.; Vesenbeckh S.; Bettermann G.; Bauer T.T.; R��ssmann H.; Mauch H.; Is delamanid a potential agent in the treatment of diseases caused by mycobacterium avium-intracellulare? Eur Respir J 2016,48(6),1803-1804 [DOI: 10.1183/13993003.01420-2016]
  121. Blair H.A.; Scott L.J.; Delamanid: A review of its use in patients with multidrug-resistant tuberculosis. Drugs 2015,75(1),91-100 [DOI: 10.1007/s40265-014-0331-4]
  122. Batson S.; de Chiara C.; Majce V.; Lloyd A.J.; Gobec S.; Rea D.; F��l��p V.; Thoroughgood C.W.; Simmons K.J.; Dowson C.G.; Fishwick C.W.G.; de Carvalho L.P.S.; Roper D.I.; Inhibition of D-Ala:D-Ala ligase through a phosphorylated form of the antibiotic D-cycloserine. Nat Commun 2017,8(1),1939 [DOI: 10.1038/s41467-017-02118-7]
  123. Khosravi A.D.; Mirsaeidi M.; Farahani A.; Tabandeh M.R.; Mohajeri P.; Shoja S.; Hoseini Lar KhosroShahi S.R.; Prevalence of nontuberculous mycobacteria and high efficacy of D-cycloserine and its synergistic effect with clarithromycin against mycobacterium fortuitum and mycobacterium abscessus. Infect Drug Resist 2018,11,2521-2532 [DOI: 10.2147/IDR.S187554]
  124. Unissa A.N.; Subbian S.; Hanna L.E.; Selvakumar N.; Overview on mechanisms of isoniazid action and resistance in mycobacterium tuberculosis. Infect Genet Evol 2016,45,474-492 [DOI: 10.1016/j.meegid.2016.09.004]
  125. Laborde J.; Deraeve C.; Lecoq L.; Sournia-Saquet A.; Stigliani J.L.; Orena B.S.; Mori G.; Pratviel G.; Bernardes-G��nisson V.; Synthesis, oxidation potential and anti-mycobacterial activity of isoniazid and analogues: Insights into the molecular isoniazid activation mechanism. ChemistrySelect 2016,1(2),172-179 [DOI: 10.1002/slct.201600040]
  126. Kumar G.; Krishna V.S.; Sriram D.; Jachak S.M.; Synthesis of carbohydrazides and carboxamides as anti-tubercular agents. Eur J Med Chem 2018,156,871-884 [DOI: 10.1016/j.ejmech.2018.07.047]
  127. Basille D.; Jounieaux V.; Andr��jak C.; Treatment of other nontuberculous mycobacteria. Semin Respir Crit Care Med 2018,39(3),377-382 [DOI: 10.1055/s-0038-1660473]
  128. DeStefano M.S.; Shoen C.M.; Cynamon M.H.; Therapy for mycobacterium kansasii infection: Beyond 2018. Front Microbiol 2018,9,2271 [DOI: 10.3389/fmicb.2018.02271]
  129. Kuo H.I.; Huang S.T.; Wu Y.H.; Rapid improvement of mycobacterium kansasii pneumonia after rifabutin, isoniazid, and ethambutol: A case report. Kaohsiung J Med Sci 2022,38(11),1137-1138 [DOI: 10.1002/kjm2.12608]
  130. Degiacomi G.; Chiarelli L.R.; Recchia D.; Petricci E.; Gianibbi B.; Fiscarelli E.V.; Fattorini L.; Manetti F.; Pasca M.R.; The antimalarial mefloquine shows activity against mycobacterium abscessus, inhibiting mycolic acid metabolism. Int J Mol Sci 2021,22(16),8533 [DOI: 10.3390/ijms22168533]
  131. Viljoen A.; Dubois V.; Girard-Misguich F.; Blaise M.; Herrmann J.L.; Kremer L.; The diverse family of M mp L transporters in mycobacteria: From regulation to antimicrobial developments. Mol Microbiol 2017,104(6),889-904 [DOI: 10.1111/mmi.13675]
  132. Umare M.D.; Khedekar P.B.; Chikhale R.V.; Mycobacterial membrane protein large 3 (MmpL3) inhibitors: A promising approach to combat tuberculosis. ChemMedChem 2021,16(20),3136-3148 [DOI: 10.1002/cmdc.202100359]
  133. Fay A.; Czudnochowski N.; Rock J.M.; Johnson J.R.; Krogan N.J.; Rosenberg O.; Glickman M.S.; Two accessory proteins govern MmpL3 mycolic acid transport in mycobacteria. MBio 2019,10(3),e00850-e19 [DOI: 10.1128/mBio.00850-19]
  134. Li W.; Obreg��n-Henao A.; Wallach J.B.; North E.J.; Lee R.E.; Gonzalez-Juarrero M.; Schnappinger D.; Jackson M.; Therapeutic potential of the mycobacterium tuberculosis mycolic acid transporter, MmpL3. Antimicrob Agents Chemother 2016,60(9),5198-5207 [DOI: 10.1128/AAC.00826-16]
  135. Degiacomi G.; Benjak A.; Madacki J.; Boldrin F.; Provvedi R.; Pal�� G.; Kordulakova J.; Cole S.T.; Manganelli R.; Essentiality of mmpL3 and impact of its silencing on mycobacterium tuberculosis gene expression. Sci Rep 2017,7(1),43495 [DOI: 10.1038/srep43495]
  136. Qu��mard A.; New insights into the mycolate-containing compound biosynthesis and transport in mycobacteria. Trends Microbiol 2016,24(9),725-738 [DOI: 10.1016/j.tim.2016.04.009]
  137. Dupont C.; Viljoen A.; Dubar F.; Blaise M.; Bernut A.; Pawlik A.; Bouchier C.; Brosch R.; Gu��rardel Y.; Leli��vre J.; Ballell L.; Herrmann J.L.; Biot C.; Kremer L.; A new piperidinol derivative targeting mycolic acid transport in mycobacterium abscessus. Mol Microbiol 2016,101(3),515-529 [DOI: 10.1111/mmi.13406]
  138. Kumar G.; Kapoor S.; Targeting mycobacterial membranes and membrane proteins: Progress and limitations. Bioorg Med Chem 2023,81,117212 [DOI: 10.1016/j.bmc.2023.117212]
  139. Foss M.H.; Pou S.; Davidson P.M.; Dunaj J.L.; Winter R.W.; Pou S.; Licon M.H.; Doh J.K.; Li Y.; Kelly J.X.; Dodean R.A.; Koop D.R.; Riscoe M.K.; Purdy G.E.; Diphenylether-modified 1,2-diamines with improved drug properties for development against mycobacterium tuberculosis. ACS Infect Dis 2016,2(7),500-508 [DOI: 10.1021/acsinfecdis.6b00052]
  140. Li W.; Yazidi A.; Pandya A.N.; Hegde P.; Tong W.; Calado Nogueira de Moura V.; North E.J.; Sygusch J.; Jackson M.; MmpL3 as a target for the treatment of drug-resistant nontuberculous mycobacterial infections. Front Microbiol 2018,9,1547 [DOI: 10.3389/fmicb.2018.01547]
  141. Pacheco S.A.; Hsu F.F.; Powers K.M.; Purdy G.E.; MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in mycobacterium smegmatis. J Biol Chem 2013,288(33),24213-24222 [DOI: 10.1074/jbc.M113.473371]
  142. Kumar G.; Narayan R.; Kapoor S.; Chemical tools for illumination of tuberculosis biology, virulence mechanisms, and diagnosis. J Med Chem 2020,63(24),15308-15332 [DOI: 10.1021/acs.jmedchem.0c01337]
  143. Das S.; Garg T.; Chopra S.; Dasgupta A.; Repurposing disulfiram to target infections caused by non-tuberculous mycobacteria. J Antimicrob Chemother 2019,74(5),1317-1322 [DOI: 10.1093/jac/dkz018]
  144. Guo Z.; The modification of natural products for medical use. Acta Pharm Sin B 2017,7(2),119-136 [DOI: 10.1016/j.apsb.2016.06.003]
  145. Dong M.; Pfeiffer B.; Altmann K.H.; Recent developments in natural product-based drug discovery for tuberculosis. Drug Discov Today 2017,22(3),585-591 [DOI: 10.1016/j.drudis.2016.11.015]
  146. De Filippis L.F.; Plant Secondary Metabolites: From Molecular Biology to Health Products 2015,263-299
  147. Verma N.; Shukla S.; Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 2015,2(4),105-113 [DOI: 10.1016/j.jarmap.2015.09.002]
  148. Bills G.F.; Gloer J.B.; Biologically active secondary metabolites from the fungi. Microbiol Spectr 2016,4(6),4.6.01 [DOI: 10.1128/microbiolspec.FUNK-0009-2016]
  149. Keller N.P.; Fungal secondary metabolism: Regulation, function and drug discovery. Nat Rev Microbiol 2019,17(3),167-180 [DOI: 10.1038/s41579-018-0121-1]
  150. Li S.; Wang Y.; Xue Z.; Jia Y.; Li R.; He C.; Chen H.; The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci Technol 2021,109,103-115 [DOI: 10.1016/j.tifs.2021.01.005]
  151. Benfield A.H.; Henriques S.T.; Mode-of-action of antimicrobial peptides: Membrane disruption vs. Intracellular mechanisms. Front Med Technol 2020,2,610997 [DOI: 10.3389/fmedt.2020.610997]
  152. Dijksteel G.S.; Ulrich M.M.W.; Middelkoop E.; Boekema B.K.H.L.; Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol 2021,12,616979 [DOI: 10.3389/fmicb.2021.616979]
  153. Wu Q.; Pato��ka J.; Ku��a K.; Insect antimicrobial peptides, a mini review. Toxins 2018,10(11),461 [DOI: 10.3390/toxins10110461]
  154. Ning H.Q.; Li Y.Q.; Tian Q.W.; Wang Z.S.; Mo H.Z.; The apoptosis of staphylococcus aureus induced by glycinin basic peptide through ROS oxidative stress response. Lebensm Wiss Technol 2019,99,62-68 [DOI: 10.1016/j.lwt.2018.09.028]
  155. Sierra J.M.; Fust�� E.; Rabanal F.; Vinuesa T.; Vi��as M.; An overview of antimicrobial peptides and the latest advances in their development. Expert Opin Biol Ther 2017,17(6),663-676 [DOI: 10.1080/14712598.2017.1315402]
  156. Sheard D.E.; O���Brien-Simpson N.M.; Wade J.D.; Separovic F.; Combating bacterial resistance by combination of antibiotics with antimicrobial peptides. Pure Appl Chem 2019,91(2),199-209 [DOI: 10.1515/pac-2018-0707]
  157. Sani M.A.; Separovic F.; How membrane-active peptides get into lipid membranes. Acc Chem Res 2016,49(6),1130-1138 [DOI: 10.1021/acs.accounts.6b00074]
  158. Kumar P.; Kizhakkedathu J.; Straus S.; Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018,8(1),4 [DOI: 10.3390/biom8010004]
  159. Zhang Q.Y.; Yan Z.; Bin; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil Med Res 2021,8,1-25
  160. Lei J.; Sun L.; Huang S.; Zhu C.; Li P.; He J.; Mackey V.; Coy D.H.; He Q.; The antimicrobial peptides and their potential clinical applications. Am J Transl Res 2019,11(7),3919-3931 [PMID: 31396309]
  161. Juturu V.; Wu J.C.; Microbial production of bacteriocins: Latest research development and applications. Biotechnol Adv 2018,36(8),2187-2200 [DOI: 10.1016/j.biotechadv.2018.10.007]
  162. Chikindas M.L.; Weeks R.; Drider D.; Chistyakov V.A.; Dicks L.M.T.; Functions and emerging applications of bacteriocins. Curr Opin Biotechnol 2018,49,23-28 [DOI: 10.1016/j.copbio.2017.07.011]
  163. Ahmad V.; Khan M.S.; Mohammad Q.; Jamal S.; Alzohairy M.A.; Al Karaawi M.A.; Siddiqui M.U.; Antimicrobial potential of bacteriocins���: In therapy, agriculture and food preservation nanomedicine and nanobiotechnology lab, department of biosciences, integral department of health information management, college of applied medical sciences, depart. Int J Antimicrob Agents 2016
  164. Perez R.H.; Zendo T.; Sonomoto K.; Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microb Cell Fact 2014,13(S1)(Suppl. 1),S3 [DOI: 10.1186/1475-2859-13-S1-S3]
  165. Aguilar-P��rez C.; Gracia B.; Rodrigues L.; Vitoria A.; Cebri��n R.; Deboos��re N.; Song O.; Brodin P.; Maqueda M.; A��nsa J.A.; Synergy between Circular Bacteriocin AS-48 and Ethambutol against mycobacterium tuberculosis. Antimicrob Agents Chemother 2018,62(9),e00359-e18 [DOI: 10.1128/AAC.00359-18]
  166. Silva T.; Magalh��es B.; Maia S.; Gomes P.; Nazmi K.; Bolscher J.G.M.; Rodrigues P.N.; Bastos M.; Gomes M.S.; Killing of mycobacterium avium by lactoferricin peptides: Improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob Agents Chemother 2014,58(6),3461-3467 [DOI: 10.1128/AAC.02728-13]
  167. Silva T.; Moreira A.C.; Nazmi K.; Moniz T.; Vale N.; Rangel M.; Gomes P.; Bolscher J.G.M.; Rodrigues P.N.; Bastos M.; Gomes M.S.; Lactoferricin peptides increase macrophages��� capacity to kill mycobacterium avium. MSphere 2017,2(4),e00301-e00317 [DOI: 10.1128/mSphere.00301-17]
  168. das Neves R.C.; Trentini M.M.; de Castro e Silva J.; Simon K.S.; Bocca A.L.; Silva L.P.; Mortari M.R.; Kipnis A.; Junqueira-Kipnis A.P.; Antimycobacterial activity of a new peptide polydim-i isolated from neotropical social wasp polybia dimorpha. PLoS One 2016,11(3),e0149729 [DOI: 10.1371/journal.pone.0149729]
  169. Trentini M.M.; das Neves R.C.; Santos B.P.O.; DaSilva R.A.; Souza A.C.B.; Mortari M.R.; Schwartz E.F.; Kipnis A.; Junqueira-Kipnis A.P.; Non-disulfide-bridge peptide 5.5 from the scorpion hadrurus gertschi inhibits the growth of mycobacterium abscessus subsp. Massiliense Front Microbiol 2017,8,1-11 [DOI: 10.3389/fmicb.2017.00273]
  170. Marques-Neto L.; Trentini M.; das Neves R.; Resende D.; Procopio V.; da Costa A.; Kipnis A.; Mortari M.; Schwartz E.; Junqueira-Kipnis A.; Antimicrobial and chemotactic activity of scorpion-derived peptide, ToAP2, against mycobacterium massiliensis. Toxins 2018,10(6),219 [DOI: 10.3390/toxins10060219]
  171. Li B.; Zhang Y.; Guo Q.; He S.; Fan J.; Xu L.; Zhang Z.; Wu W.; Chu H.; Antibacterial peptide RP557 increases the antibiotic sensitivity of mycobacterium abscessus by inhibiting biofilm formation. Sci Total Environ 2022,807(Pt 3),151855 [DOI: 10.1016/j.scitotenv.2021.151855]
  172. Sudadech P.; Roytrakul S.; Kaewprasert O.; Sirichoat A.; Chetchotisakd P.; Kanthawong S.; Faksri K.; Assessment of in vitro activities of novel modified antimicrobial peptides against clarithromycin resistant mycobacterium abscessus. PLoS One 2021,16(11),e0260003 [DOI: 10.1371/journal.pone.0260003]
  173. Rao K.U.; Henderson D.I.; Krishnan N.; Puthia M.; Glegola-Madejska I.; Brive L.; Bjarnemark F.; Millqvist Fureby A.; Hjort K.; Andersson D.I.; Tenland E.; Stureg��rd E.; Robertson B.D.; Godaly G.; A broad spectrum anti-bacterial peptide with an adjunct potential for tuberculosis chemotherapy. Sci Rep 2021,11(1),4201 [DOI: 10.1038/s41598-021-83755-3]
  174. Koopmans T.; Wood T.M.; ���t Hart P.; Kleijn L.H.J.; Hendrickx A.P.A.; Willems R.J.L.; Breukink E.; Martin N.I.; Semisynthetic lipopeptides derived from nisin display antibacterial activity and lipid II binding on par with that of the parent compound. J Am Chem Soc 2015,137(29),9382-9389 [DOI: 10.1021/jacs.5b04501]
  175. Santos J.C.P.; Sousa R.C.S.; Otoni C.G.; Moraes A.R.F.; Souza V.G.L.; Medeiros E.A.A.; Espitia P.J.P.; Pires A.C.S.; Coimbra J.S.R.; Soares N.F.F.; Nisin and other antimicrobial peptides: Production, mechanisms of action, and application in active food packaging. Innov Food Sci Emerg Technol 2018,48,179-194 [DOI: 10.1016/j.ifset.2018.06.008]
  176. Ali Z.I.; Saudi A.M.; Albrecht R.; Talaat A.M.; The inhibitory effect of nisin on mycobacterium avium ssp. Paratuberculosis and its effect on mycobacterial cell wall. J Dairy Sci 2019,102(6),4935-4944 [DOI: 10.3168/jds.2018-16106]
  177. Yagi A.; Uchida R.; Hamamoto H.; Sekimizu K.; Kimura K.; Tomoda H.; Anti-mycobacterium activity of microbial peptides in a silkworm infection model with mycobacterium smegmatis. J Antibiot 2017,70(5),685-690 [DOI: 10.1038/ja.2017.23]
  178. Chopra B.; Dhingra A.K.; Prasad D.N.; Modification in the natural bioactive molecule: Piperine; A continuing source for the drug development. Curr Bioact Compd 2020,16(6),714-725 [DOI: 10.2174/1573407215666190318125023]
  179. Zhu S.; Su Y.; Shams S.; Feng Y.; Tong Y.; Zheng G.; Lassomycin and lariatin lasso peptides as suitable antibiotics for combating mycobacterial infections: Current state of biosynthesis and perspectives for production. Appl Microbiol Biotechnol 2019,103(10),3931-3940 [DOI: 10.1007/s00253-019-09771-6]
  180. Geberetsadik G.; Inaizumi A.; Nishiyama A.; Yamaguchi T.; Hamamoto H.; Panthee S.; Tamaru A.; Hayatsu M.; Mizutani Y.; Kaboso S.A.; Hakamata M.; Ilinov A.; Ozeki Y.; Tateishi Y.; Sekimizu K.; Matsumoto S.; Lysocin E.; Lysocin E targeting menaquinone in the membrane of mycobacterium tuberculosis is a promising lead compound for antituberculosis drugs. Antimicrob Agents Chemother 2022,66(9),e00171-e22 [DOI: 10.1128/aac.00171-22]
  181. Gao W.; Kim J.Y.; Anderson J.R.; Akopian T.; Hong S.; Jin Y.Y.; Kandror O.; Kim J.W.; Lee I.A.; Lee S.Y.; McAlpine J.B.; Mulugeta S.; Sunoqrot S.; Wang Y.; Yang S.H.; Yoon T.M.; Goldberg A.L.; Pauli G.F.; Suh J.W.; Franzblau S.G.; Cho S.; The cyclic peptide ecumicin targeting ClpC1 is active against mycobacterium tuberculosis in vivo. Antimicrob Agents Chemother 2015,59(2),880-889 [DOI: 10.1128/AAC.04054-14]
  182. Sullivan J.R.; Yao J.; Courtine C.; Lupien A.; Herrmann J.; M��ller R.; Behr M.A.; Natural products lysobactin and sorangicin a show in vitro activity against mycobacterium abscessus complex. Microbiol Spectr 2022,10(6),e02672-e22 [DOI: 10.1128/spectrum.02672-22]
  183. Lee W.; Schaefer K.; Qiao Y.; Srisuknimit V.; Steinmetz H.; M��ller R.; Kahne D.; Walker S.; The mechanism of action of lysobactin. J Am Chem Soc 2016,138(1),100-103 [DOI: 10.1021/jacs.5b11807]
  184. Lilic M.; Chen J.; Boyaci H.; Braffman N.; Hubin E.A.; Herrmann J.; M��ller R.; Mooney R.; Landick R.; Darst S.A.; Campbell E.A.; The antibiotic sorangicin A inhibits promoter DNA unwinding in a mycobacterium tuberculosis rifampicin-resistant RNA polymerase. Proc Natl Acad Sci USA 2020,117(48),30423-30432 [DOI: 10.1073/pnas.2013706117]
  185. Hosoda K.; Koyama N.; Kanamoto A.; Tomoda H.; discovery of nosiheptide, griseoviridin, and etamycin as potent anti-mycobacterial agents against mycobacterium avium complex. Molecules 2019,24(8),1495 [DOI: 10.3390/molecules24081495]
  186. Yu X.; Zhu R.; Geng Z.; Kong Y.; Wang F.; Dong L.; Zhao L.; Xue Y.; Ma X.; Huang H.; Nosiheptide harbors potent in vitro and intracellular inhbitory activities against mycobacterium tuberculosis. Microbiol Spectr 2022,10(6),e01444-e22 [DOI: 10.1128/spectrum.01444-22]
  187. Fan Y.; Chen H.; Mu N.; Wang W.; Zhu K.; Ruan Z.; Wang S.; Nosiheptide analogues as potential antibacterial agents via dehydroalanine region modifications: Semi-synthesis, antimicrobial activity and molecular docking study. Bioorg Med Chem 2021,31,115970 [DOI: 10.1016/j.bmc.2020.115970]
  188. Alanjary M.; Medema M.H.; Mining bacterial genomes to reveal secret synergy. J Biol Chem 2018,293(52),19996-19997 [DOI: 10.1074/jbc.H118.006669]
  189. Osterman I.A.; Komarova E.S.; Shiryaev D.I.; Korniltsev I.A.; Khven I.M.; Lukyanov D.A.; Tashlitsky V.N.; Serebryakova M.V.; Efremenkova O.V.; Ivanenkov Y.A.; Bogdanov A.A.; Sergiev P.V.; Dontsova O.A.; Sorting out antibiotics��� mechanisms of action: A double fluorescent protein reporter for high-throughput screening of ribosome and DNA biosynthesis inhibitors. Antimicrob Agents Chemother 2016,60(12),7481-7489 [DOI: 10.1128/AAC.02117-16]
  190. Kim T.H.; Hanh B.T.B.; Kim G.; Lee D.G.; Park J.W.; Lee S.E.; Kim J.S.; Kim B.S.; Ryoo S.; Jo E.K.; Jang J.; Thiostrepton: A novel therapeutic drug candidate for mycobacterium abscessus infection. Molecules 2019,24(24),4511 [DOI: 10.3390/molecules24244511]
  191. Bailly C.; The bacterial thiopeptide thiostrepton. An update of its mode of action, pharmacological properties and applications. Eur J Pharmacol 2022,914,174661 [DOI: 10.1016/j.ejphar.2021.174661]
  192. Choules M.P.; Wolf N.M.; Lee H.; Anderson J.R.; Grzelak E.M.; Wang Y.; Ma R.; Gao W.; McAlpine J.B.; Jin Y.Y.; Cheng J.; Lee H.; Suh J.W.; Duc N.M.; Paik S.; Choe J.H.; Jo E.K.; Chang C.L.; Lee J.S.; Jaki B.U.; Pauli G.F.; Franzblau S.G.; Cho S.; Rufomycin targets ClpC1 proteolysis in mycobacterium tuberculosis and M. Abscessus Antimicrob Agents Chemother 2019,63(3),e02204-e02218 [DOI: 10.1128/AAC.02204-18]
  193. Lee H.; Suh J.W.; Anti-tuberculosis lead molecules from natural products targeting mycobacterium tuberculosis ClpC1. J Ind Microbiol Biotechnol 2016,43(2-3),205-212 [DOI: 10.1007/s10295-015-1709-3]
  194. Zhou B.; Shetye G.; Yu Y.; Santarsiero B.D.; Klein L.L.; Abad-Zapatero C.; Wolf N.M.; Cheng J.; Jin Y.; Lee H.; Suh J.W.; Lee H.; Bisson J.; McAlpine J.B.; Chen S.N.; Cho S.H.; Franzblau S.G.; Pauli G.F.; Antimycobacterial rufomycin analogues from streptomyces atratus strain MJM3502. J Nat Prod 2020,83(3),657-667 [DOI: 10.1021/acs.jnatprod.9b01095]
  195. Kazmaier U.; Junk L.; Recent developments on the synthesis and bioactivity of ilamycins/rufomycins and cyclomarins, marine cyclopeptides that demonstrate anti-malaria and anti-tuberculosis activity. Mar Drugs 2021,19(8),446 [DOI: 10.3390/md19080446]
  196. Hou X.M.; Liang T.M.; Guo Z.Y.; Wang C.Y.; Shao C.L.; Discovery, absolute assignments, and total synthesis of asperversiamides A���C and their potent activity against mycobacterium marinum. Chem Commun 2019,55(8),1104-1107 [DOI: 10.1039/C8CC09347D]
  197. Aragaw W.W.; Roubert C.; Fontaine E.; Lagrange S.; Zimmerman M.D.; Dartois V.; Gengenbacher M.; Dick T.; Cyclohexyl-griselimycin is active against mycobacterium abscessus in mice. Antimicrob Agents Chemother 2022,66(1),e01400-e01421 [DOI: 10.1128/AAC.01400-21]
  198. Kling A.; Lukat P.; Almeida D.V.; Bauer A.; Fontaine E.; Sordello S.; Zaburannyi N.; Herrmann J.; Wenzel S.C.; K��nig C.; Ammerman N.C.; Barrio M.B.; Borchers K.; Bordon-Pallier F.; Br��nstrup M.; Courtemanche G.; Gerlitz M.; Geslin M.; Hammann P.; Heinz D.W.; Hoffmann H.; Klieber S.; Kohlmann M.; Kurz M.; Lair C.; Matter H.; Nuermberger E.; Tyagi S.; Fraisse L.; Grosset J.H.; Lagrange S.; M��ller R.; Targeting DnaN for tuberculosis therapy using novel griselimycins. Science 2015,348,1106-1112
  199. Holzgrabe U.; New griselimycins for treatment of tuberculosis. Chem Biol 2015,22(8),981-982 [DOI: 10.1016/j.chembiol.2015.08.002]
  200. Ganapathy U.S.; Dartois V.; Dick T.; Repositioning rifamycins for mycobacterium abscessus lung disease. Expert Opin Drug Discov 2019,14(9),867-878 [DOI: 10.1080/17460441.2019.1629414]
  201. Ramos D.; Matthiensen A.; Colvara W.; de Votto A.; Trindade G.; da Silva P.; Yunes J.; Antimycobacterial and cytotoxicity activity of microcystins. J Venom Anim Toxins Incl Trop Dis 2015,21(1),9 [DOI: 10.1186/s40409-015-0009-8]
  202. Ramis I.; Vianna J.; Reis A.; von Groll A.; Ramos D.; Viveiros M.; da Silva P.; Antimicrobial and efflux inhibitor activity of usnic acid against mycobacterium abscessus. Planta Med 2018,84(17),1265-1270 [DOI: 10.1055/a-0639-5412]
  203. Cirillo D.; Borroni E.; Festoso I.; Monti D.; Romeo S.; Mazier D.; Verotta L.; Synthesis and antimycobacterial activity of (+)���usnic acid conjugates. Arch Pharm 2018,351(12),1800177 [DOI: 10.1002/ardp.201800177]
  204. Ishida K.; Shabuer G.; Schieferdecker S.; Pidot S.J.; Stinear T.P.; Knuepfer U.; Cyrulies M.; Hertweck C.; Oak���associated negativicute equipped with ancestral aromatic polyketide synthase produces antimycobacterial dendrubins. Chemistry 2020,26(58),13147-13151 [DOI: 10.1002/chem.202001939]
  205. Srinivasan M.; Shanmugam K.; Kedike B.; Narayanan S.; Shanmugam S.; Gopalasamudram Neelakantan H.; Trypethelone and phenalenone derivatives isolated from the mycobiont culture of Trypethelium eluteriae Spreng. and their anti-mycobacterial properties. Nat Prod Res 2020,34(23),3320-3327 [DOI: 10.1080/14786419.2019.1566823]
  206. Sun Z.; Liang Y.C.; Lu C.; Lupien A.; Xu Z.; Berton S.; Discovery of Benzo [ c ] phenanthridine derivatives with potent activity against multidrug resistant mycobacterium tuberculosis. 2022,1-25
  207. Hamoud R.; Reichling J.; Wink M.; Synergistic antibacterial activity of the combination of the alkaloid sanguinarine with EDTA and the antibiotic streptomycin against multidrug resistant bacteria. J Pharm Pharmacol 2015,67(2),264-273 [DOI: 10.1111/jphp.12326]
  208. Jyoti M.A.; Nam K.W.; Jang W.S.; Kim Y.H.; Kim S.K.; Lee B.E.; Song H.Y.; Antimycobacterial activity of methanolic plant extract of Artemisia capillaris containing ursolic acid and hydroquinone against mycobacterium tuberculosis. J Infect Chemother 2016,22(4),200-208 [DOI: 10.1016/j.jiac.2015.11.014]
  209. Jyoti M.A.; Zerin T.; Kim T.H.; Hwang T.S.; Jang W.S.; Nam K.W.; Song H.Y.; In vitro effect of ursolic acid on the inhibition of mycobacterium tuberculosis and its cell wall mycolic acid. Pulm Pharmacol Ther 2015,33,17-24 [DOI: 10.1016/j.pupt.2015.05.005]
  210. Nam K.W.; Jang W.S.; Jyoti M.A.; Kim S.; Lee B.E.; Song H.Y.; In vitro activity of (-)-deoxypergularinine, on its own and in combination with anti-tubercular drugs, against resistant strains of mycobacterium tuberculosis. Phytomedicine 2016,23(5),578-582 [DOI: 10.1016/j.phymed.2016.02.017]
  211. Wang C.J.; Yan Q.L.; Ma Y.F.; Sun C.P.; Chen C.M.; Tian X.G.; Han X.Y.; Wang C.; Deng S.; Ma X.C.; ent -abietane and tigliane diterpenoids from the roots of euphorbia fischeriana and their inhibitory effects against mycobacterium smegmatis. J Nat Prod 2017,80(5),1248-1254 [DOI: 10.1021/acs.jnatprod.6b00786]
  212. Brackett S.M.; Cox K.E.; Barlock S.L.; Huggins W.M.; Ackart D.F.; Bassaraba R.J.; Melander R.J.; Melander C.; Meridianin D.; Meridianin D analogues possess antibiofilm activity against mycobacterium smegmatis. RSC Med Chem 2020,11(1),92-97 [DOI: 10.1039/C9MD00466A]
  213. Zeiler M.J.; Melander R.J.; Melander C.; Second���generation meridianin analogues inhibit the formation of mycobacterium smegmatis biofilms and sensitize polymyxin���resistant gram���negative bacteria to colistin. ChemMedChem 2020,15(17),1672-1679 [DOI: 10.1002/cmdc.202000438]
  214. Safwat N.A.; Kashef M.T.; Aziz R.K.; Amer K.F.; Ramadan M.A.; Quercetin 3-O-Glucoside Recovered from the Wild Egyptian Sahara Plant, Euphorbia Paralias L, Inhibits Glutamine Synthetase and Has Antimycobacterial Activity 2018,Vol. 108
  215. Ni H.J.; Lv S.Y.; Sheng Y.T.; Wang H.; Chu X.H.; Zhang H.W.; Optimization of fermentation conditions and medium compositions for the production of chrysomycin a by a marine-derived strain Streptomyces sp. 891. Prep Biochem Biotechnol 2021,51(10),998-1003 [DOI: 10.1080/10826068.2021.1885046]
  216. Herzon S.B.; Herzon S.B.; New leads for the treatment of multidrug resistant mycobacterium tuberculosis. ACS Cent Sci 2020,6(6),833-835 [DOI: 10.1021/acscentsci.0c00684]
  217. Muralikrishnan B.; Edison L.K.; Dusthackeer A.; Jijimole G.R.; Ramachandran R.; Madhavan A.; Kumar R.A.; Chrysomycin A.; Chrysomycin A inhibits the topoisomerase I of mycobacterium tuberculosis. J Antibiot 2022,75(4),226-235 [DOI: 10.1038/s41429-022-00503-z]
  218. Sabdaningsih A.; Liu Y.; Mettal U.; Heep J.; Riyanti ; Wang L.; Cristianawati O.; Nuryadi H.; Triandala Sibero M.; Marner M.; Radjasa O.K.; Sabdono A.; Trianto A.; Sch��berle T.F.; A new citrinin derivative from the indonesian marine sponge-associated fungus penicillium citrinum. Mar Drugs 2020,18(4),227-238 [DOI: 10.3390/md18040227]
  219. Sarkar A.; Ghosh S.; Shaw R.; Patra M.M.; Calcuttawala F.; Mukherjee N.; Das Gupta S.K.; Mycobacterium tuberculosis thymidylate synthase (ThyX) is a target for plumbagin, a natural product with antimycobacterial activity. PLoS One 2020,15(2),e0228657 [DOI: 10.1371/journal.pone.0228657]
  220. Elnaas A.R.; Grice D.; Han J.; Feng Y.; Capua A.D.; Mak T.; Laureanti J.A.; Buchko G.W.; Myler P.J.; Cook G.; Quinn R.J.; Liu M.; Discovery of a natural product that binds to the mycobacterium tuberculosis protein Rv1466 using native mass spectrometry. Molecules 2020,25(10),2384 [DOI: 10.3390/molecules25102384]
  221. Ravindran R.; Chakrapani G.; Mitra K.; Doble M.; Inhibitory activity of traditional plants against mycobacterium smegmatis and their action on Filamenting temperature sensitive mutant Z (FtsZ)���A cell division protein. PLoS One 2020,15(5),e0232482 [DOI: 10.1371/journal.pone.0232482]
  222. Lv H.; Wang K.; Xue Y.; Chen J.; Su H.; Zhang J.; Wu Y.; Jia J.; Bi H.; Wang H.; Hong K.; Li X.; Three new metabolites from the marine-derived fungus aspergillus sp. WHUF03110. Nat Prod Commun 2021,16(10),1934578X2110550 [DOI: 10.1177/1934578X211055009]
  223. Donoso V.; Bacho M.; N����ez S.; Rovirosa J.; San-Mart��n A.; Leiva S.; Antimicrobial diterpenes from azorella species against gram-positive bacteria. Nat Prod Commun 2015,10(11),1934578X1501001 [DOI: 10.1177/1934578X1501001127]
  224. Bockman M.R.; Engelhart C.A.; Cramer J.D.; Howe M.D.; Mishra N.K.; Zimmerman M.; Larson P.; Alvarez-Cabrera N.; Park S.W.; Boshoff H.I.M.; Bean J.M.; Young V.G.; Ferguson D.M.; Dartois V.; Jarrett J.T.; Schnappinger D.; Aldrich C.C.; Investigation of (S)-(���)-Acidomycin: A selective antimycobacterial natural product that inhibits biotin synthase. ACS Infect Dis 2019,5(4),598-617 [DOI: 10.1021/acsinfecdis.8b00345]
  225. Omokhua-Uyi A.G.; Madikizela B.; Aro A.O.; Abdalla M.A.; Van Staden J.; McGaw L.J.; Flavonoids of Chromolaena odorata (L.) R.M.King and H.Rob. as potential leads for treatment against tuberculosis. S Afr J Bot 2023,158,158-165 [DOI: 10.1016/j.sajb.2023.05.002]
  226. Ramadwa T.E.; Awouafack M.D.; Sonopo M.S.; Eloff J.N.; Antibacterial and Antimycobacterial Activity of Crude Extracts, Fractions, and Isolated Compounds From Leaves of Sneezewood, Ptaeroxylon Obliquum 2019 [DOI: 10.1177/1934578X19872927]
  227. Hochfellner C.; Evangelopoulos D.; Zloh M.; Wube A.; Guzman J.D.; McHugh T.D.; Kunert O.; Bhakta S.; Bucar F.; Antagonistic effects of indoloquinazoline alkaloids on antimycobacterial activity of evocarpine. J Appl Microbiol 2015,118(4),864-872 [DOI: 10.1111/jam.12753]
  228. Pereira A.O.; Avila J.M.; do Carmo G.; Siqueira F.S.; Campos M.M.A.; Back D.F.; Morel A.F.; Dalcol I.I.; Chemical composition, antimicrobial and antimycobacterial activities of Aristolochia triangularis Cham. from Brazil. Ind Crops Prod 2018,121,461-467 [DOI: 10.1016/j.indcrop.2018.05.052]
  229. de Almeida A.L.; Caleffi-Ferracioli K.R.; de L Scodro R.B.; Baldin V.P.; Montaholi D.C.; Spricigo L.F.; Nakamura-Vasconcelos S.S.; Hegeto L.A.; Sampiron E.G.; Costacurta G.F.; dos S Yamazaki D.A.; F Gauze G.; Siqueira V.L.D.; Cardoso R.F.; Cardoso R.F.; Eugenol and derivatives activity against mycobacterium tuberculosis, nontuberculous mycobacteria and other bacteria. Future Microbiol 2019,14(4),331-344 [DOI: 10.2217/fmb-2018-0333]
  230. Bamberger D.; Jantzer N.; Leidner K.; Arend J.; Efferth T.; Fighting mycobacterial infections by antibiotics, phytochemicals and vaccines. Microbes Infect 2011,13(7),613-623 [DOI: 10.1016/j.micinf.2010.09.002]
  231. Alvarenga D.J.; Matias L.M.F.; Oliveira L.M.; Le��o L.P.M.O.; Hawkes J.A.; Raimundo B.V.B.; Castro L.F.D.; Campos M.M.A.; Siqueira F.S.; Santos T.; Carvalho D.T.; Exploring how structural changes to new Licarin A derivatives effects their bioactive properties against rapid growing mycobacteria and biofilm formation. Microb Pathog 2020,144,104203 [DOI: 10.1016/j.micpath.2020.104203]
  232. Belardinelli J.M.; Verma D.; Li W.; Avanzi C.; Wiersma C.J.; Williams J.T.; Johnson B.K.; Zimmerman M.; Whittel N.; Angala B.; Wang H.; Jones V.; Dartois V.; de Moura V.C.N.; Gonzalez-Juarrero M.; Pearce C.; Schenkel A.R.; Malcolm K.C.; Nick J.A.; Charman S.A.; Wells T.N.C.; Podell B.K.; Vennerstrom J.L.; Ordway D.J.; Abramovitch R.B.; Jackson M.; Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in mycobacterium abscessus. Sci Transl Med 2022,14(633),eabj3860 [DOI: 10.1126/scitranslmed.abj3860]
  233. Garc��a-Davis S.; Leal-L��pez K.; Molina-Torres C.A.; Vera-Cabrera L.; D��az-Marrero A.R.; Fern��ndez J.J.; Carranza-Rosales P.; Viveros-Valdez E.; Antimycobacterial activity of laurinterol and aplysin from laurencia johnstonii. Mar Drugs 2020,18(6),287 [DOI: 10.3390/md18060287]
  234. Aro A.O.; Dzoyem J.P.; Awouafack M.D.; Selepe M.A.; Eloff J.N.; McGaw L.J.; Fractions and isolated compounds from Oxyanthus speciosus subsp. stenocarpus (Rubiaceae) have promising antimycobacterial and intracellular activity. BMC Complement Altern Med 2019,19(1),108 [DOI: 10.1186/s12906-019-2520-x]
  235. Alves J.A.; Mantovani A.L.L.; Martins M.H.G.; Abrao F.; Lucarini R.; Crotti A.E.M.; Martins C.H.G.; Antimycobacterial activity of some commercially available plant-derived essential oils. Chem Nat Compd 2015,51(2),353-355 [DOI: 10.1007/s10600-015-1281-0]
  236. Kazakova O.; Lopatina T.; Giniyatullina G.; Mioc M.; Soica C.; Antimycobacterial activity of azepanobetulin and its derivative: In vitro, in vivo, ADMET and docking studies. Bioorg Chem 2020,104,104209 [DOI: 10.1016/j.bioorg.2020.104209]
  237. Karkare S.; Chung T.T.H.; Collin F.; Mitchenall L.A.; McKay A.R.; Greive S.J.; Meyer J.J.M.; Lall N.; Maxwell A.; The naphthoquinone diospyrin is an inhibitor of DNA gyrase with a novel mechanism of action. J Biol Chem 2013,288(7),5149-5156 [DOI: 10.1074/jbc.M112.419069]
  238. Muzitano M.F.; Bi�� Ventura T.L.; da Silva Machado F.L.; de Araujo M.H.; de Souza Gestinari L.M.; Kaiser C.R.; Esteves F.A.; Lasunskaia E.B.; Soares A.R.; Nitric oxide production inhibition and anti-mycobacterial activity of extracts and halogenated sesquiterpenes from the Brazilian red alga laurencia dendroidea J. Agardh Pharmacogn Mag 2015,11(44)(Suppl. 4),611 [DOI: 10.4103/0973-1296.172972]
  239. Patel Y.S.; Mistry N.; Mehra S.; Repurposing artemisinin as an anti-mycobacterial agent in synergy with rifampicin. Tuberculosis 2019,115,146-153 [DOI: 10.1016/j.tube.2019.03.004]
  240. Tseng C.Y.; Sun M.F.; Li T.C.; Lin C.T.; Effect of coptis chinensis on biofilm formation and antibiotic susceptibility in mycobacterium abscessus. Evid Based Complement Alternat Med 2020,2020,1-9 [DOI: 10.1155/2020/9754357]
  241. Sirichoat A.; Kham-ngam I.; Kaewprasert O.; Ananta P.; Wisetsai A.; Lekphrom R.; Faksri K.; Assessment of antimycobacterial activities of pure compounds extracted from Thai medicinal plants against clarithromycin-resistant mycobacterium abscessus. PeerJ 2021,9,e12391 [DOI: 10.7717/peerj.12391]
  242. Gholap S.S.; Pyrrole: An emerging scaffold for construction of valuable therapeutic agents. Eur J Med Chem 2016,110,13-31 [DOI: 10.1016/j.ejmech.2015.12.017]
  243. Kumar G.; Kiran Tudu A.; Tackling multidrug-resistant Staphylococcus aureus by natural products and their analogues acting as NorA efflux pump inhibitors. Bioorg Med Chem 2023,80,117187 [DOI: 10.1016/j.bmc.2023.117187]
  244. Gr��blacher B.; Kunert O.; Bucar F.; Compounds of Alpinia katsumadai as potential efflux inhibitors in mycobacterium smegmatis. Bioorg Med Chem 2012,20(8),2701-2706 [DOI: 10.1016/j.bmc.2012.02.039]
  245. Solnier J.; Martin L.; Bhakta S.; Bucar F.; Flavonoids as novel efflux pump inhibitors and antimicrobials against both environmental and pathogenic intracellular mycobacterial species. Molecules 2020,25(3),734 [DOI: 10.3390/molecules25030734]
  246. Tran H.T.; Solnier J.; Pferschy-Wenzig E.M.; Kunert O.; Martin L.; Bhakta S.; Huynh L.; Le T.M.; Bauer R.; Bucar F.; Antimicrobial and efflux pump inhibitory activity of carvotacetones from sphaeranthus africanus against mycobacteria. Antibiotics 2020,9(7),390 [DOI: 10.3390/antibiotics9070390]
  247. ��imunovi�� K.; Solnier J.; Alperth F.; Kunert O.; Smole Mo��ina S.S.; Bucar F.; Efflux pump inhibition and resistance modulation in mycobacterium smegmatis by peucedanum ostruthium and its coumarins. Antibiotics 2021,10(9),1075 [DOI: 10.3390/antibiotics10091075]

MeSH Term

Nontuberculous Mycobacteria
Biological Products
Humans
Anti-Bacterial Agents
Mycobacterium Infections, Nontuberculous
Microbial Sensitivity Tests
Drug Repositioning

Chemicals

Biological Products
Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0NTMspeciesNontuberculousinfectionsresistanceMycobacteriacomplexnaturalpulmonarychronicobstructivepneumoconiosisregimensstrainstreatingNaturalreferbacteriacausetuberculosisleprosyexcludingubiquitouspresentsoilswaterscansurvivewiderangeenvironmentalconditionsdirectinoculumwatermaterialslikelysourceNTMsresponsibleseveralillnessesincludingalveolarproteinosiscysticfibrosisbronchiectasisdiseaseRecentreportssuggestbecomeinsensitivesterilizingagentsantisepticsdisinfectantsefficacyexistinganti-NTMdiminishingcompromisedduedrugNewrecurringcasesmultidrug-resistantincreasingThusurgentneedant-NTMnovelmodesactionreviewshedslightmodeantimicrobialdiscussedrepurposabledrugsantibioticsshownnewindicationsactivitydevelopedAlsosummarisedrecentlyidentifiedleadsactingpotentialNTM-associatedTacklingRepurposableDrugsPotentialLeadsProductsDrugMabscessusMycobacteriumaviumproductsmycobacteria

Similar Articles

Cited By (1)