Nanoemulsion and nanoencapsulation of a hydroethanolic extract of Nettle () and Wormwood (): comparison of antibacterial and anticancer activity.

Zeinab Rahmani, Merat Karimi, Iman Saffari, Hamed Mirzaei, Majid Nejati, Reza Sharafati Chaleshtori
Author Information
  1. Zeinab Rahmani: Department of Laser and Photonics, Faculty of Physics, University of Kashan, Kashan, Iran.
  2. Merat Karimi: Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran.
  3. Iman Saffari: Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
  4. Hamed Mirzaei: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
  5. Majid Nejati: Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
  6. Reza Sharafati Chaleshtori: Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.

Abstract

Nanoemulsion and nanoencapsulation are attractive novel methods that can be used for incorporating active plant extracts in food preparations and pharmaceutical formulations. In the current study, we aimed to investigate the anticancer and antibacterial effects of hydroethanolic extracts of Nettle (NE), Wormwood (WE), and the combination of the two plants (CNWE), as well as their nanoemulsion forms (NN, NW, CNNW) and nanoencapsulation forms (CN, CW, and CCNW). The morphology and structure of the nanoemulsion and nanoencapsulation preparations were assessed utilizing dynamic light scattering (DLS) along with transmission electron microscopy (TEM). The antibacterial activity of the prepared formulations were assessed by determining minimum inhibitory concentration (MIC), zone of inhibition diameter, minimum bactericidal concentration (MBC), along with biofilm growth inhibition against Salmonaella typhimurium and Klebsiella. pneumoniae. The anticancer activity was evaluated via a MTT assay in the colon cancer cell line (HCT116). The nanoemulsion and nanoencapsulation particle size varied between 10 and 50 nm and 60 and 110 nm, respectively. The MIC values were between 11.25 and 95 µg/mL along with MBC values between 11.25 and 190 µg/mL. The highest inhibition of biofilm formation was observed with CCNW against K. pneumoniae (∼78.5%) and S. typhimurium (∼73%). In descending order, the inhibition of biofilm formation was CCNW > CW > CN > CNNW > NN > NW > CNWE > NE > WE against the tested bacteria. The IC50 values for NE, WE, CNWE, NN, NW, CNNW, CN, CW, and CCNW were determined as 250, 170, 560, 380, 312, 370, 250, 420, and 700 µg/mL, respectively. Exposure to a high concentration of NW resulted in a significantly lower HCT116 viability compared to other groups. Taken together, CNNW, and CCNW showed the highest antibacterial and anticancer activitiy. Nanoemulsion and nanoencapsulation were effective ways to increase the antibacterial and anticancer activity of the extracts and could be used in the food and pharmaceutical industries.

Keywords

References

  1. Protein J. 2011 Jan;30(1):59-65 [PMID: 21210194]
  2. Molecules. 2023 Aug 01;28(15): [PMID: 37570781]
  3. PLoS One. 2023 Apr 13;18(4):e0284244 [PMID: 37053209]
  4. Microsc Res Tech. 2023 Jun;86(6):669-685 [PMID: 36883432]
  5. Molecules. 2021 Oct 12;26(20): [PMID: 34684733]
  6. J Environ Health Sci Eng. 2020 Aug 31;18(2):1015-1027 [PMID: 33312620]
  7. Environ Toxicol. 2020 Nov;35(11):1225-1233 [PMID: 32697429]
  8. J Ethnopharmacol. 2016 Dec 4;193:670-690 [PMID: 27705748]
  9. Heliyon. 2022 Jun 22;8(6):e09717 [PMID: 35800714]
  10. J Food Prot. 2020 Apr 1;83(4):576-583 [PMID: 31855457]
  11. Malays J Med Sci. 2021 Dec;28(6):64-75 [PMID: 35002491]
  12. Front Pharmacol. 2023 May 18;14:1195364 [PMID: 37274102]
  13. Food Res Int. 2019 Sep;123:414-424 [PMID: 31284993]
  14. Environ Sci Pollut Res Int. 2023 Mar;30(13):38869-38885 [PMID: 36585593]
  15. Antioxidants (Basel). 2023 Feb 27;12(3): [PMID: 36978844]
  16. Animals (Basel). 2023 Jun 24;13(13): [PMID: 37443890]
  17. Foods. 2020 Nov 12;9(11): [PMID: 33198209]
  18. Front Nutr. 2023 Mar 02;10:1019211 [PMID: 36937359]
  19. Curr Res Food Sci. 2022 Apr 22;5:763-774 [PMID: 35520272]
  20. J Agric Food Chem. 2023 Mar 1;71(8):3564-3582 [PMID: 36791411]
  21. Curr Pharm Biotechnol. 2020;21(15):1711-1721 [PMID: 32988347]
  22. Mol Biol Rep. 2021 Dec;48(12):7703-7710 [PMID: 34755263]
  23. New Microbes New Infect. 2022 Dec 24;51:101076 [PMID: 36624873]
  24. Biotechnol J. 2022 Feb;17(2):e2100432 [PMID: 34747563]
  25. Jundishapur J Microbiol. 2015 Jan 14;8(3):e20128 [PMID: 25973158]
  26. Adv Colloid Interface Sci. 2021 Jan;287:102318 [PMID: 33242713]
  27. Int J Mol Sci. 2020 Feb 13;21(4): [PMID: 32070025]
  28. BMC Complement Altern Med. 2019 Oct 28;19(1):288 [PMID: 31660943]

Word Cloud

Created with Highcharts 10.0.0>nanoencapsulationanticancerantibacterialactivityCCNWnanoemulsionNWCNNWinhibitionNanoemulsionextractshydroethanolicNEWECNWENNCNCWalongconcentrationbiofilmvaluesusedfoodpreparationspharmaceuticalformulationsNettleWormwoodformsassessedminimumMICMBCtyphimuriumpneumoniaeHCT116respectively1125highestformation250extractattractivenovelmethodscanincorporatingactiveplantcurrentstudyaimedinvestigateeffectscombinationtwoplantswellmorphologystructureutilizingdynamiclightscatteringDLStransmissionelectronmicroscopyTEMprepareddetermininginhibitoryzonediameterbactericidalgrowthSalmonaellaKlebsiellaevaluatedviaMTTassaycoloncancercelllineparticlesizevaried1050 nm60110 nm95 µg/mL190 µg/mLobservedK∼785%S∼73%descendingordertestedbacteriaIC50determined170560380312370420700 µg/mLExposurehighresultedsignificantlylowerviabilitycomparedgroupsTakentogethershowedactivitiyeffectivewaysincreaseindustries:comparisonArtemisiaabsinthiumUrticadioica

Similar Articles

Cited By