Three-Minute Enantioselective Amino Acid Analysis by Ultra-High-Performance Liquid Chromatography Drift Tube Ion Mobility-Mass Spectrometry Using a Chiral Core-Shell Tandem Column Approach.

Simon Jonas Jaag, Younes Valadbeigi, Tim Causon, Harald Gross, Michael Lämmerhofer
Author Information
  1. Simon Jonas Jaag: Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.
  2. Younes Valadbeigi: Department of Chemistry, Faculty of Science, Imam Khomeini International University, Nowrouzian, 3414896818 Qazvin, Iran.
  3. Tim Causon: University of Natural Resources and Life Sciences, Vienna Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190 Vienna, Austria. ORCID
  4. Harald Gross: Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany. ORCID
  5. Michael Lämmerhofer: Pharmaceutical (Bio-)Analysis, Institute of Pharmaceutical Sciences, University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany.

Abstract

Fast liquid chromatography (LC) amino acid enantiomer separation of 6-aminoquinolyl--hydroxysuccinimidyl carbamate (AQC) derivatives using a chiral core-shell particle tandem column with weak anion exchange and zwitterionic-type quinine carbamate selectors in less than 3 min was achieved. Enantiomers of all AQC-derivatized proteinogenic amino acids and some isomeric ones (24 in total plus achiral glycine) were baseline separated ( > 1.5 except for glutamic acid with = 1.3), while peaks of distinct amino acids and structural isomers (constitutional isomers and diastereomers of leucine and threonine) of the same configuration overlapped to various degrees. For this reason, drift tube ion mobility-mass spectrometry was added (i.e., LC-IM-MS) as an additional selectivity filter without extending run time. The IM separation dimension in combination with high-resolution demultiplexing enabled confirmation of threonine isomers (threonine, -threonine, homoserine), while leucine, isoleucine, and -isoleucine have almost identical collisional cross-section () values and added no selectivity to the partial LC separation. Density functional theory (DFT) calculations show that IM separation of threonine isomers was possible due to conformational stabilization by hydrogen bond formation between the hydroxyl side chain and the urea group. Generally, the CCS of protonated ions increased uniformly with addition of the AQC label, while outliers could be explained by consideration of intramolecular interactions and additional structural analysis. Preliminary validation of the enantioselective LC-IM-MS method for quantitative analysis showed compliance of accuracy and precision with common limits in bioanalytical methods, and applicability to a natural lipopeptide and a therapeutic synthetic peptide could be demonstrated.

References

  1. J Nat Prod. 2019 Feb 22;82(2):301-308 [PMID: 30666877]
  2. J Chromatogr A. 2017 Sep 1;1513:1-17 [PMID: 28756893]
  3. J Pharm Biomed Anal. 2015 Dec 10;116:40-6 [PMID: 25617178]
  4. Anal Chim Acta. 2021 Oct 2;1180:338858 [PMID: 34538327]
  5. J Chromatogr A. 2016 Jan 4;1427:55-68 [PMID: 26687167]
  6. Anal Chem. 2021 Jan 19;93(2):859-867 [PMID: 33226780]
  7. Can J Microbiol. 2021 Feb;67(2):119-137 [PMID: 32783775]
  8. Anal Chem. 2021 Oct 12;93(40):13589-13596 [PMID: 34597017]
  9. Biochim Biophys Acta Proteins Proteom. 2021 Jan;1869(1):140553 [PMID: 33002629]
  10. J Pharm Biomed Anal. 2022 Jan 5;207:114430 [PMID: 34757254]
  11. J Chromatogr A. 2001 Apr 13;913(1-2):331-40 [PMID: 11355830]
  12. J Sep Sci. 2021 Jun;44(12):2474-2482 [PMID: 33823081]
  13. Anal Chem. 2020 Jul 21;92(14):9482-9492 [PMID: 32628451]
  14. J Pept Sci. 2014 Aug;20(8):595-612 [PMID: 24895293]
  15. Anal Chem. 2017 Jan 3;89(1):952-959 [PMID: 28029037]
  16. BMC Evol Biol. 2007 May 16;7:78 [PMID: 17506888]
  17. J Am Soc Mass Spectrom. 2022 Jun 1;33(6):996-1002 [PMID: 35580025]
  18. Nutrients. 2019 Sep 12;11(9): [PMID: 31547425]
  19. J Chromatogr A. 2019 Jul 5;1596:69-78 [PMID: 30837161]
  20. Anal Chem. 2019 Jun 18;91(12):7679-7689 [PMID: 31083928]
  21. J Sep Sci. 2006 Feb;29(3):429-45 [PMID: 16544886]
  22. Anal Bioanal Chem. 2019 Sep;411(24):6265-6274 [PMID: 31302708]
  23. Anal Chem. 2015 Sep 15;87(18):9137-48 [PMID: 25945416]
  24. Signal Transduct Target Ther. 2022 Feb 14;7(1):48 [PMID: 35165272]
  25. J Pharm Biomed Anal. 2022 Feb 5;209:114539 [PMID: 34954468]
  26. J Sep Sci. 2008 Dec;31(21):3688-97 [PMID: 18956385]
  27. J Chromatogr A. 2019 Oct 11;1603:130-140 [PMID: 31235330]
  28. Foods. 2020 Mar 09;9(3): [PMID: 32182786]
  29. Chembiochem. 2016 Apr 15;17(8):712-8 [PMID: 26205791]
  30. J Chromatogr A. 2018 Oct 5;1570:91-98 [PMID: 30104059]
  31. J Alzheimers Dis. 2021;80(2):475-492 [PMID: 33554911]
  32. Anal Bioanal Chem. 2018 May;410(12):2971-2979 [PMID: 29532193]
  33. Chirality. 2020 Jul;32(7):981-989 [PMID: 32141123]
  34. J Am Soc Mass Spectrom. 2019 Nov;30(11):2185-2195 [PMID: 31493234]
  35. Anal Chem. 2021 Jan 19;93(2):878-885 [PMID: 33337156]
  36. Methods Mol Biol. 2019;2030:253-261 [PMID: 31347123]
  37. Anal Chem. 2017 Sep 5;89(17):9048-9055 [PMID: 28763190]
  38. J Pharm Biomed Anal. 2022 Aug 5;217:114807 [PMID: 35567854]
  39. J Chromatogr A. 2018 Sep 28;1569:149-159 [PMID: 30041874]
  40. J Chromatogr A. 2020 Aug 2;1624:461235 [PMID: 32540075]
  41. Anal Chem. 2022 Dec 13;94(49):17063-17072 [PMID: 36442145]
  42. J Sep Sci. 2023 Apr;46(8):e2200738 [PMID: 36806481]
  43. Rapid Commun Mass Spectrom. 2019 Jul;33 Suppl 2:66-74 [PMID: 30801790]
  44. Anal Chem. 2019 Mar 5;91(5):3277-3285 [PMID: 30682252]
  45. J Chromatogr A. 2004 Dec 24;1061(2):167-73 [PMID: 15641359]
  46. Analyst. 2019 Feb 25;144(5):1660-1670 [PMID: 30649115]
  47. Chem Sci. 2022 Nov 21;13(47):14114-14123 [PMID: 36540812]
  48. Sci Rep. 2020 Jan 21;10(1):804 [PMID: 31965028]
  49. Anal Chem. 2022 Jan 25;94(3):1804-1812 [PMID: 34931812]
  50. Angew Chem Int Ed Engl. 2017 Mar 27;56(14):3770-3821 [PMID: 28323366]
  51. Anal Chem. 2022 Apr 26;94(16):6191-6199 [PMID: 35421308]

MeSH Term

Amino Acids
Chromatography, High Pressure Liquid
Stereoisomerism
Leucine
Isoleucine
Liquid Chromatography-Mass Spectrometry
Threonine
Ions

Chemicals

Amino Acids
Leucine
Isoleucine
Threonine
Ions

Word Cloud

Created with Highcharts 10.0.0separationisomersthreonineaminoLCacidcarbamateAQC3acids1structuralleucineaddedLC-IM-MSadditionalselectivityIManalysisFastliquidchromatographyenantiomer6-aminoquinolyl--hydroxysuccinimidylderivativesusingchiralcore-shellparticletandemcolumnweakanionexchangezwitterionic-typequinineselectorslessminachievedEnantiomersAQC-derivatizedproteinogenicisomericones24totalplusachiralglycinebaselineseparated>5exceptglutamic=peaksdistinctconstitutionaldiastereomersconfigurationoverlappedvariousdegreesreasondrifttubeionmobility-massspectrometryiefilterwithoutextendingruntimedimensioncombinationhigh-resolutiondemultiplexingenabledconfirmation-threoninehomoserineisoleucine-isoleucinealmostidenticalcollisionalcross-sectionvaluespartialDensityfunctionaltheoryDFTcalculationsshowpossibledueconformationalstabilizationhydrogenbondformationhydroxylsidechainureagroupGenerallyCCSprotonatedionsincreaseduniformlyadditionlabeloutliersexplainedconsiderationintramolecularinteractionsPreliminaryvalidationenantioselectivemethodquantitativeshowedcomplianceaccuracyprecisioncommonlimitsbioanalyticalmethodsapplicabilitynaturallipopeptidetherapeuticsyntheticpeptidedemonstratedThree-MinuteEnantioselectiveAminoAcidAnalysisUltra-High-PerformanceLiquidChromatographyDriftTubeIonMobility-MassSpectrometryUsingChiralCore-ShellTandemColumnApproach

Similar Articles

Cited By