Automating the assessment of multicultural orientation through machine learning and natural language processing.

Simon B Goldberg, Michael Tanana, Shaakira Haywood Stewart, Camille Y Williams, Christina S Soma, David C Atkins, Zac E Imel, Jesse Owen
Author Information
  1. Simon B Goldberg: Department of Counseling Psychology, University of Wisconsin-Madison. ORCID
  2. Michael Tanana: Lyssn.io.
  3. Shaakira Haywood Stewart: Department of Counseling Psychology, University of Denver.
  4. Camille Y Williams: Department of Counseling Psychology, University of Wisconsin-Madison.
  5. Christina S Soma: Lyssn.io.
  6. David C Atkins: Lyssn.io.
  7. Zac E Imel: Lyssn.io.
  8. Jesse Owen: Department of Counseling Psychology, University of Denver.

Abstract

Recent scholarship has highlighted the value of therapists adopting a multicultural orientation (MCO) within psychotherapy. A newly developed performance-based measure of MCO capacities exists (MCO-performance task [MCO-PT]) in which therapists respond to video-based vignettes of clients sharing culturally relevant information in therapy. The MCO-PT provides scores related to the three aspects of MCO: cultural humility (i.e., adoption of a nonsuperior and other-oriented stance toward clients), cultural opportunities (i.e., seizing or making moments in session to ask about clients' cultural identities), and cultural comfort (i.e., therapists' comfort in cultural conversations). Although a promising measure, the MCO-PT relies on labor-intensive human coding. The present study evaluated the ability to automate the scoring of the MCO-PT transcripts using modern machine learning and natural language processing methods. We included a sample of 100 participants ( = 613 MCO-PT responses). Results indicated that machine learning models were able to achieve near-human reliability on the average across all domains (Spearman's �� = .75, < .0001) and opportunity (�� = .81, < .0001). Performance was less robust for cultural humility (�� = .46, < .001) and was poorest for cultural comfort (�� = .41, < .001). This suggests that we may be on the cusp of being able to develop machine learning-based training paradigms that could allow therapists opportunities for feedback and deliberate practice of some key therapist behaviors, including aspects of MCO. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

References

  1. J Couns Psychol. 2020 Jul;67(4):438-448 [PMID: 32614225]
  2. J Couns Psychol. 2019 Oct;66(5):534-549 [PMID: 30998053]
  3. Behav Ther. 2020 Jan;51(1):113-122 [PMID: 32005329]
  4. J Clin Psychol. 2009 Jul;65(7):755-68 [PMID: 19437509]
  5. J Consult Clin Psychol. 2016 Jan;84(1):57-66 [PMID: 26594945]
  6. Psychotherapy (Chic). 2013 Dec;50(4):496-502 [PMID: 24295457]
  7. J Law Med Ethics. 2022;50(1):92-100 [PMID: 35243993]
  8. J Couns Psychol. 2016 Jan;63(1):1-11 [PMID: 26751152]
  9. Couns Psychol. 2017 Aug;45(6):873-901 [PMID: 29217847]
  10. Psychotherapy (Chic). 2018 Mar;55(1):89-100 [PMID: 29565626]
  11. Psychotherapy (Chic). 2021 Jun;58(2):324-339 [PMID: 33734743]
  12. Curr Opin Anaesthesiol. 2021 Apr 1;34(2):131-136 [PMID: 33630771]
  13. Psychiatry. 2022 Winter;85(4):317-333 [PMID: 35848800]
  14. J Subst Abuse Treat. 2016 Jun;65:43-50 [PMID: 26944234]
  15. PLoS One. 2021 Oct 22;16(10):e0258639 [PMID: 34679105]
  16. Annu Rev Psychol. 1996;47:273-305 [PMID: 15012483]
  17. Psychother Res. 2021 Mar;31(3):281-288 [PMID: 32172682]
  18. PLoS One. 2015 Dec 02;10(12):e0143055 [PMID: 26630392]
  19. J Couns Psychol. 2015 Jul;62(3):337-50 [PMID: 26167650]
  20. Psychother Res. 2017 Nov;27(6):642-652 [PMID: 28277042]
  21. J Couns Psychol. 2016 Mar;63(2):224-32 [PMID: 26689626]
  22. Psychother Res. 2020 Apr;30(4):417-432 [PMID: 31122157]
  23. J Clin Psychol. 2018 Nov;74(11):1907-1923 [PMID: 30091201]
  24. Am Psychol. 2021 Apr;76(3):475-487 [PMID: 32584061]
  25. Lancet Digit Health. 2023 Mar;5(3):e107-e108 [PMID: 36754724]
  26. J Couns Psychol. 2013 Jul;60(3):353-366 [PMID: 23647387]
  27. Am Psychol. 2009 Sep;64(6):515-26 [PMID: 19739881]
  28. Psychother Res. 2016;26(3):342-51 [PMID: 25486323]
  29. Annu Rev Clin Psychol. 2018 May 7;14:91-118 [PMID: 29401044]
  30. Psychotherapy (Chic). 2011 Sep;48(3):274-82 [PMID: 21639652]
  31. J Couns Psychol. 2011 Jan;58(1):1-9 [PMID: 21133540]
  32. Am Psychol. 2003 May;58(5):377-402 [PMID: 12971086]
  33. Behav Res Methods. 2022 Apr;54(2):690-711 [PMID: 34346043]
  34. Am Psychol. 2014 Apr;69(3):218-29 [PMID: 24393136]
  35. Implement Sci. 2014 Apr 24;9:49 [PMID: 24758152]
  36. Psychother Res. 2021 Jan;31(1):92-116 [PMID: 32862761]
  37. J Couns Psychol. 2023 Jan;70(1):81-89 [PMID: 36174188]
  38. J Couns Psychol. 2016 Apr;63(3):269-277 [PMID: 27078198]

Grants

  1. K23 AT010879/NCCIH NIH HHS
  2. R42 MH128101/NIMH NIH HHS
  3. T32 MH018931/NIMH NIH HHS

Word Cloud

Created with Highcharts 10.0.0cultural=MCO-PTmachine��<therapistsMCOiecomfortlearningmulticulturalorientationmeasureclientsaspectshumilityopportunitiesnaturallanguageprocessingable0001001Recentscholarshiphighlightedvalueadoptingwithinpsychotherapynewlydevelopedperformance-basedcapacitiesexistsMCO-performancetask[MCO-PT]respondvideo-basedvignettessharingculturallyrelevantinformationtherapyprovidesscoresrelatedthreeMCO:adoptionnonsuperiorother-orientedstancetowardseizingmakingmomentssessionaskclients'identitiestherapists'conversationsAlthoughpromisingrelieslabor-intensivehumancodingpresentstudyevaluatedabilityautomatescoringtranscriptsusingmodernmethodsincludedsample100participants613responsesResultsindicatedmodelsachievenear-humanreliabilityaverageacrossdomainsSpearman's75opportunity81Performancelessrobust46poorest41suggestsmaycuspdeveloplearning-basedtrainingparadigmsallowfeedbackdeliberatepracticekeytherapistbehaviorsincludingPsycInfoDatabaseRecordc2024APArightsreservedAutomatingassessment

Similar Articles

Cited By (1)