Modelling HIV/AIDS epidemiological complexity: A scoping review of Agent-Based Models and their application.

Rodrigo Volmir Anderle, Robson Bruniera de Oliveira, Felipe Alves Rubio, James Macinko, Ines Dourado, Davide Rasella
Author Information
  1. Rodrigo Volmir Anderle: Institute of Collective Health, Federal University of Bahia (UFBA), Salvador, Brazil. ORCID
  2. Robson Bruniera de Oliveira: Institute of Collective Health, Federal University of Bahia (UFBA), Salvador, Brazil.
  3. Felipe Alves Rubio: Institute of Collective Health, Federal University of Bahia (UFBA), Salvador, Brazil.
  4. James Macinko: Departments of Health Policy and Management and Community Health Sciences, UCLA Fielding School of Public Health, Los Angeles, California, United States of America.
  5. Ines Dourado: Institute of Collective Health, Federal University of Bahia (UFBA), Salvador, Brazil.
  6. Davide Rasella: Institute of Collective Health, Federal University of Bahia (UFBA), Salvador, Brazil.

Abstract

OBJECTIVE: To end the AIDS epidemic by 2030, despite the increasing poverty and inequalities, policies should be designed to deal with population heterogeneity and environmental changes. Bottom-up designs, such as the Agent-Based Model (ABM), can model these features, dealing with such complexity. HIV/AIDS has a complex dynamic of structural factors, risk behaviors, biomedical characteristics and interventions. All embedded in unequal, stigmatized and heterogeneous social structure. To understand how ABMs can model this complexity, we performed a scoping review of HIV applications, highlighting their potentialities.
METHODS: We searched on PubMed, Web of Science, and Scopus repositories following the PRISMA extension for scoping reviews. Our inclusion criteria were HIV/AIDS studies with an ABM application. We identified the main articles using a local co-citation analysis and categorized the overall literature aims, (sub)populations, regions, and if the papers declared the use of ODD protocol and limitations.
RESULTS: We found 154 articles. We identified eleven main papers, and discussed them using the overall category results. Most studies model Transmission Dynamics (37/154), about Men who have sex with Men (MSM) (41/154), or individuals living in the US or South Africa (84/154). Recent studies applied ABM to model PrEP interventions (17/154) and Racial Disparities (12/154). Only six papers declared the use of ODD Protocol (6/154), and 34/154 didn't mention the study limitations.
CONCLUSIONS: While ABM is among the most sophisticated techniques available to model HIV/AIDS complexity. Their applications are still restricted to some realities. However, researchers are challenged to think about social structure due model characteristics, the inclusion of these features is still restricted to case-specific. Data and computational power availability can enhance this feature providing insightful results.

References

  1. Annu Rev Public Health. 2012 Apr;33:357-76 [PMID: 22224885]
  2. Int J Epidemiol. 2010 Feb;39(1):97-106 [PMID: 19820105]
  3. Lancet HIV. 2017 Jul;4(7):e311-e320 [PMID: 28431923]
  4. PLoS One. 2018 Jul 9;13(7):e0199915 [PMID: 29985949]
  5. Annu Rev Public Health. 2018 Apr 1;39:77-94 [PMID: 29328870]
  6. PLoS One. 2012;7(9):e44833 [PMID: 23028637]
  7. Curr HIV/AIDS Rep. 2015 Dec;12(4):481-8 [PMID: 26519083]
  8. AIDS. 2020 Aug 1;34(10):1509-1517 [PMID: 32384282]
  9. Ann Intern Med. 2018 Oct 2;169(7):467-473 [PMID: 30178033]
  10. PLoS One. 2014 Nov 14;9(11):e112668 [PMID: 25398143]
  11. BMC Infect Dis. 2022 Mar 7;22(1):233 [PMID: 35255860]
  12. Am J Public Health. 2006 Mar;96(3):505-14 [PMID: 16449579]
  13. Lancet HIV. 2018 Sep;5(9):e498-e505 [PMID: 29908917]
  14. Prev Sci. 2022 Jul;23(5):832-843 [PMID: 34780006]
  15. Am J Public Health. 2015 Mar;105(3):e20-31 [PMID: 25602871]
  16. Open Forum Infect Dis. 2022 Jun 06;9(7):ofac274 [PMID: 35855962]
  17. Pharmacoeconomics. 2019 Oct;37(10):1219-1239 [PMID: 31222521]
  18. Drug Alcohol Depend. 2022 Sep 1;238:109573 [PMID: 35926301]
  19. AIDS. 2015 Sep 10;29(14):1855-62 [PMID: 26372391]
  20. AIDS. 2016 Oct 23;30(16):2537-2544 [PMID: 27490641]
  21. Transl Behav Med. 2019 Nov 25;9(6):1065-1075 [PMID: 30649559]
  22. Lancet. 2012 Jul 28;380(9839):411-23 [PMID: 22819654]
  23. BMC Public Health. 2018 Dec 18;18(1):1387 [PMID: 30563496]
  24. Am J Epidemiol. 2017 Jul 15;186(2):146-148 [PMID: 28673036]
  25. Global Health. 2022 Jan 21;18(1):4 [PMID: 35062966]
  26. Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7301-6 [PMID: 17438298]
  27. AIDS. 2011 May 15;25(8):1103-12 [PMID: 21505305]
  28. Public Health. 2021 Oct;199:20-24 [PMID: 34534885]
  29. BMC Infect Dis. 2017 Sep 11;17(1):612 [PMID: 28893198]
  30. J Artif Soc Soc Simul. 2020 Oct 31;23(4): [PMID: 33204215]
  31. Am J Epidemiol. 2017 Jul 15;186(2):131-142 [PMID: 28838064]
  32. Sex Transm Dis. 2012 Jun;39(6):407-13 [PMID: 22592824]
  33. Sex Transm Dis. 2004 Aug;31(8):475-80 [PMID: 15273580]
  34. AIDS Behav. 2021 Nov;25(Suppl 2):215-224 [PMID: 34478016]
  35. BMC Public Health. 2023 Apr 20;23(1):716 [PMID: 37081482]
  36. J Infect Dis. 2021 Mar 29;223(6):1019-1028 [PMID: 33507308]
  37. Lancet. 2021 Mar 20;397(10279):1116-1126 [PMID: 33617771]
  38. Lancet. 2009 Feb 14;373(9663):544-5 [PMID: 19217987]
  39. Lancet. 2012 Jul 28;380(9839):367-77 [PMID: 22819660]
  40. PLoS One. 2019 Aug 27;14(8):e0221564 [PMID: 31454373]
  41. Malar J. 2018 Aug 17;17(1):299 [PMID: 30119664]
  42. Am J Public Health. 2006 Jun;96(6):1007-19 [PMID: 16670223]
  43. PLoS One. 2013;8(2):e55312 [PMID: 23457467]
  44. AIDS. 2007 Oct 1;21(15):2083-91 [PMID: 17885299]
  45. AIDS. 2020 Nov 15;34(14):2103-2113 [PMID: 32910062]
  46. BMC Public Health. 2017 Jul 25;17(1):614 [PMID: 28738861]
  47. Int J Public Health. 2015 May;60(4):457-66 [PMID: 25838121]

Grants

  1. P2C HD041022/NICHD NIH HHS
  2. R01 AI152938/NIAID NIH HHS

MeSH Term

Female
Humans
Male
Acquired Immunodeficiency Syndrome
HIV Infections
Homosexuality, Male
Systems Analysis

Word Cloud

Created with Highcharts 10.0.0modelABMHIV/AIDScancomplexityscopingstudiespapersAgent-BasedfeaturescharacteristicsinterventionssocialstructurereviewapplicationsinclusionapplicationidentifiedmainarticlesusingoveralldeclareduseODDlimitationsresultsMenstillrestrictedOBJECTIVE:endAIDSepidemic2030despiteincreasingpovertyinequalitiespoliciesdesigneddealpopulationheterogeneityenvironmentalchangesBottom-updesignsModeldealingcomplexdynamicstructuralfactorsriskbehaviorsbiomedicalembeddedunequalstigmatizedheterogeneousunderstandABMsperformedHIVhighlightingpotentialitiesMETHODS:searchedPubMedWebScienceScopusrepositoriesfollowingPRISMAextensionreviewscriterialocalco-citationanalysiscategorizedliteratureaimssubpopulationsregionsprotocolRESULTS:found154elevendiscussedcategoryTransmissionDynamics37/154sexMSM41/154individualslivingUSSouthAfrica84/154RecentappliedPrEP17/154RacialDisparities12/154sixProtocol6/15434/154mentionstudyCONCLUSIONS:amongsophisticatedtechniquesavailablerealitiesHoweverresearcherschallengedthinkduecase-specificDatacomputationalpoweravailabilityenhancefeatureprovidinginsightfulModellingepidemiologicalcomplexity:Models

Similar Articles

Cited By