Systems engineering of Escherichia coli for high-level glutarate production from glucose.

Zhilan Zhang, Ruyin Chu, Wanqing Wei, Wei Song, Chao Ye, Xiulai Chen, Jing Wu, Liming Liu, Cong Gao
Author Information
  1. Zhilan Zhang: School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
  2. Ruyin Chu: School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
  3. Wanqing Wei: School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China. ORCID
  4. Wei Song: School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
  5. Chao Ye: School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China.
  6. Xiulai Chen: School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China. ORCID
  7. Jing Wu: School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
  8. Liming Liu: School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China. ORCID
  9. Cong Gao: School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China. conggao@jiangnan.edu.cn. ORCID

Abstract

Glutarate is a key monomer in polyester and polyamide production. The low efficiency of the current biosynthetic pathways hampers its production by microbial cell factories. Herein, through metabolic simulation, a lysine-overproducing E. coli strain Lys5 is engineered, achieving titer, yield, and productivity of 195.9���g/L, 0.67���g/g glucose, and 5.4���g/L��h, respectively. Subsequently, the pathway involving aromatic aldehyde synthase, monoamine oxidase, and aldehyde dehydrogenase (AMA pathway) is introduced into E. coli Lys5 to produce glutarate from glucose. To enhance the pathway's efficiency, rational mutagenesis on the aldehyde dehydrogenase is performed, resulting in the development of variant Mu5 with a 50-fold increase in catalytic efficiency. Finally, a glutarate tolerance gene cbpA is identified and genomically overexpressed to enhance glutarate productivity. With enzyme expression optimization, the glutarate titer, yield, and productivity of E. coli AMA06 reach 88.4���g/L, 0.42���g/g glucose, and 1.8���g/L��h, respectively. These findings hold implications for improving glutarate biosynthesis efficiency in microbial cell factories.

References

  1. Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30328-30334 [PMID: 33199604]
  2. Nat Commun. 2021 May 14;12(1):2793 [PMID: 33990583]
  3. Metab Eng. 2019 Mar;52:77-86 [PMID: 30458240]
  4. Biotechnol Adv. 2020 May - Jun;40:107496 [PMID: 31756374]
  5. J Agric Food Chem. 2020 Jul 22;68(29):7691-7696 [PMID: 32578426]
  6. J Am Chem Soc. 2009 Aug 19;131(32):11558-70 [PMID: 19627092]
  7. Biotechnol Adv. 2022 Jan-Feb;54:107863 [PMID: 34793881]
  8. Appl Microbiol Biotechnol. 2021 May;105(9):3587-3599 [PMID: 33907891]
  9. Front Mol Biosci. 2021 May 14;8:659550 [PMID: 34055881]
  10. Metab Eng. 2019 Jan;51:99-109 [PMID: 30144560]
  11. Plants (Basel). 2021 Jun 22;10(7): [PMID: 34206363]
  12. Enzyme Microb Technol. 2022 Sep;159:110053 [PMID: 35537377]
  13. Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27954-27961 [PMID: 33106428]
  14. Nat Commun. 2018 May 29;9(1):2114 [PMID: 29844506]
  15. Biotechnol J. 2021 Sep;16(9):e2100151 [PMID: 34164941]
  16. Biotechnol Bioeng. 2019 Feb;116(2):333-341 [PMID: 30450795]
  17. J Mol Biol. 2021 Feb 5;433(3):166750 [PMID: 33310019]
  18. Metab Eng. 2020 Mar;58:2-16 [PMID: 30905694]
  19. Angew Chem Int Ed Engl. 2021 Apr 26;60(18):10203-10210 [PMID: 33624917]
  20. ACS Synth Biol. 2017 Oct 20;6(10):1922-1930 [PMID: 28618222]
  21. Metab Eng. 2018 May;47:113-120 [PMID: 29545147]
  22. J Am Chem Soc. 2022 Nov 16;144(45):20739-20751 [PMID: 36326587]
  23. Appl Environ Microbiol. 2018 Aug 1;84(16): [PMID: 29858204]
  24. BMC Biotechnol. 2017 Feb 13;17(1):10 [PMID: 28193207]
  25. ACS Synth Biol. 2021 Dec 17;10(12):3561-3575 [PMID: 34851612]
  26. J Chem Theory Comput. 2018 Nov 13;14(11):5787-5796 [PMID: 30351922]
  27. Nat Chem Biol. 2019 Oct;15(10):1001-1008 [PMID: 31548693]
  28. Metab Eng. 2022 Mar;70:1-11 [PMID: 34965469]
  29. Nat Chem Biol. 2022 Dec;18(12):1361-1369 [PMID: 36376475]
  30. Microb Cell Fact. 2021 May 10;20(1):97 [PMID: 33971881]
  31. J Biol Chem. 2011 Dec 16;286(50):43486-94 [PMID: 22021038]
  32. Nat Commun. 2017 Nov 14;8(1):1587 [PMID: 29138484]
  33. PLoS Genet. 2013;9(1):e1003152 [PMID: 23341772]
  34. Nat Rev Microbiol. 2017 Jul;15(7):385-396 [PMID: 28420885]
  35. Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10792-E10798 [PMID: 29183977]
  36. Nat Biotechnol. 2017 Oct 11;35(10):904-908 [PMID: 29020004]
  37. Metab Eng. 2019 Sep;55:161-169 [PMID: 31220663]
  38. Nat Commun. 2019 Jul 26;10(1):3337 [PMID: 31350399]

MeSH Term

Escherichia coli
Glutarates
Glucose
Metabolic Engineering
Aldehyde Dehydrogenase

Chemicals

Glutarates
Glucose
Aldehyde Dehydrogenase

Word Cloud

Similar Articles

Cited By